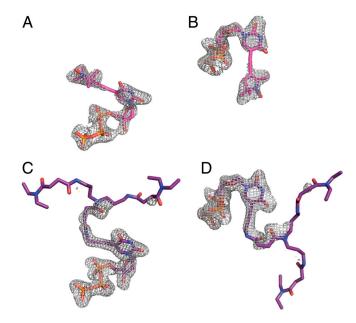

Supporting Information

Obeid et al. 10.1073/pnas.1013804107



Fig. S1. Pre-steady-state kinetics of the modified $dT^{R}TP$. (*A*) Kinetics of single nucleotide incorporation opposite A catalyzed by *KlenTaq* in dependence of time and dNTP concentration. The single turnover is plotted against the time for various $dT^{spin}TP$ concentrations in μ M (color code on the right side). (*B*) The curve show dependence of the observed pre-steady-state rates (k_{obs}) on $dT^{spin}TP$ concentration and fitted to a hyperbolic equation. (*C*) The same as *A* using $dT^{dend}TP$ instead of $dT^{spin}TP$. (*D*) The k_{obs} values were plotted versus the concentration of the used $dT^{dend}TP$ and fitted to a hyperbolic equation.


dT^{spin}TP vs. dT^{dend}TP

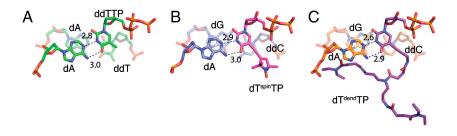

Fig. S2. Comparison of the pre-steady-state kinetics of the two modified dT^RTP . Pre-steady-state kinetics of single nucleotide incorporation opposite A catalyzed by *KlenTaq* wild type. The k_{obs} values were plotted versus the concentration of the used $dT^{spin}TP$ (triangle) and $dT^{dend}TP$ (square) and fitted to a hyperbolic equation, respectively.

Fig. S3. Structure of *KlenTaq* in complex with C5 modified $dT^{R}TPs$. (A) Overall structure of *KlenTaq*_{spin} (blue) is superimposed with ddTTP-trapped *KlenTaq* (1QTM, green). The location of $dT^{spin}TP$ is indicated. (B) Overall structure of *KlenTaq*_{dend} (orange) is superimposed with ddTTP-trapped *KlenTaq* (1QTM, green). The location of $dT^{dend}TP$ is indicated.

Fig. S4. Simulated annealing omit maps of the incoming $dT^{R}TP$. (*A* and *B*) The final refined simulated annealing omit map mFo-DFc at 3σ is shown for $dT^{spin}TP$. (*C* and *D*) The final refined simulated annealing omit map mFo-DFc encountered at 3σ is shown for $dT^{dend}TP$.

Fig. S5. Top view of the nascent base pair. (A) The nascent base pair of KlenTaq (PDB 1QTM). The hydrogen bonding between the incoming ddTTP and the templating dA is shown in dashed lines. In transparent the first nucleobase pair of the primer template terminus is shown. (B) The nascent base pair of $KlenTaq_{spin}$. The Watson–Crick base pairing interaction between the incoming dTspinTP and the templating dA is shown in dashed lines. In transparent the first nucleobase pair of $KlenTaq_{spin}$. The Watson–Crick base pairing interaction between the incoming dTspinTP and the templating dA is shown in dashed lines. In transparent the first nucleobase pair of $KlenTaq_{dend}$. The interaction network between the incoming dT^{dend}TP and the templating dA is shown in dashed lines. In transparent the first nucleobase pair of the primer template terminus is shown.

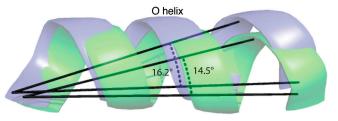


Fig. S6. Comparison of the O helices from KlenTaq_{spin} and KlenTaq 1QTM. The O helices of the superimposed KlenTaq_{spin} (blue) and ddTTP-trapped KlenTaq (green) structure are shown. The respective angle of the O helices are indicated.

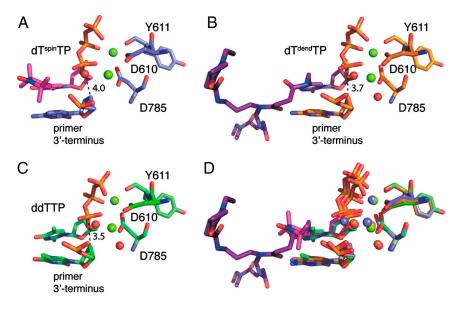


Fig. 57. Close-up views on the primer 3'-terminus, incoming nucleotide and amino acids complexing divalent cations. (A) Stick model derived from $KlenTaq_{spin}$. The distance of the α -phosphate from the incoming dT^{spin}TP to the primer 3'-terminus is 4.0 Å (highlighted in dashed lines). Water molecules (red) and magnesium ions (green) are indicated as spheres. (B) Same as in A for $KlenTaq_{dend}$. (C) Same as in A for the reported $KlenTaq_{1QTM}$. (D) Superpostion of structures depicted in A-C using the respective color code for the water and magnesium ions as well.

Thermus aquaticus	659	RR AAKTINFGVLYG	672
Thermus thermophilus	661	RRAAKTVNFGVLYG	674
Thermus filiformis	659	RR AAKTVNFGVLYG	672
Deinococcus radiodurans	784	RRAAKTVNFGVLYG	797
Escherichia coli (K12)	754	RRSAKAINFGLIYG	767
Haemophilus influenzae	757	RRNAKAINFGLIYG	770
Streptococcus pneumoniae	715	RRNAKAVNFGVVYG	728
Mycobacterium tuberculosis	729	RRVKAMSYGLAYG	742
Mycobacterium leprae		RRVKAMSYGLAYG	749
Treponema pallidum		RRIAKTINFGIVYG	836
Borrelia burgdorferi		R R IAKSINFGIIYR	746
Lactococcus lactis		R R NAKAVNFGVVYG	716
Rickettsia typhi		RRKAKAINFGIIYG	713
Streptomyces coelicolor		R R KIKAMSYGLAYG	745

Fig. S8. Amino acid sequence alignment of DNA polymerases highlighting the conserved position equivalent to Arg660 in KlenTaq.

	KlenTaq _{spin} (PDB ID: 3OJU)	KlenTaq _{dend} (PDB ID: 3OJS)
Data collection		
Space group	<i>P</i> 3 ₁ 21	<i>P</i> 3₁21
Cell dimensions	- 1	- 1
a, b, c (Å)	109.0, 109.0, 91.5	107.8, 107.8, 90.2
α, β, γ (°)	90.0, 90.0, 120.0	90.0, 90.0, 120.0
Resolution (Å)	47.21 - 1.99 (2.11 - 1.99)*	46.69 - 1.90 (2.01 - 1.90)*
R _{meas}	10.8 (113.9)*	13.1 (154.6)*
I/ol	16.7 (1.8)*	14.7 (1.6)*
Completeness (%)	74.5 (28.0)*	98.8 (93.7)*
Redundancy	10.6 (7.6)*	10.8 (8.9)*
Refinement		
Resolution (Å)	47.22 - 2.00 (2.06 - 2.00)*	46.71 - 1.90 (1.94 - 1.90)*
No. reflections	32113 (856)*	47553 (2333)*
$R_{\rm work}/R_{\rm free}$	17.7/21.9 (22.3/25.6)*	16.3/21.2 (25.8/28.2)*
No. atoms		
Protein	8612	8662
Ligand/ion	582/2	650/2
Water	195	332
B-factors		
Protein	49.9	47.7
Ligand/ion	41.1/42.0	44.1/30.7
Water	40.0	45.1
R.m.s. deviations		
Bond lengths (Å)	0.004	0.006
Bond angles (°)	1.060	1.120

Table S1. Data collection and refinement statistics

*Values in parentheses are for highest-resolution shell.

PNAS PNAS