
electronic reprint

Journal of

Applied
Crystallography

ISSN 0021-8898

Computing in macromolecular crystallography using a parallel
architecture
Kay Diederichs

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its
storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

J. Appl. Cryst. (2000). 33, 1154–1161 Kay Diederichs � Parallel computing

research papers

1154 Kay Diederichs � Parallel computing J. Appl. Cryst. (2000). 33, 1154±1161

Journal of

Applied
Crystallography

ISSN 0021-8898

Received 8 March 2000

Accepted 8 May 2000

2000 International Union of Crystallography

Printed in Great Britain ± all rights reserved

Computing in macromolecular crystallography
using a parallel architecture

Kay Diederichs

Naturwissenschaftliche Sektion, Fachbereich Biologie, UniversitaÈt Konstanz, M656, 78457

Konstanz, Germany. Correspondence e-mail: kay.diederichs@uni-konstanz.de

Despite advances in computer technology, computing in macromolecular

crystallography keeps pace in its demand for CPU power. Improvements in

CPU speed, together with advances in computing methods that depend on it,

often translate into the possibility to solve structures that would otherwise

require additional experiments. Programs for data reduction, molecular-

replacement programs employing multidimensional searches on a grid in real,

Patterson or reciprocal space, and phasing and re®nement programs, currently

have, among others, the highest requirements for CPU power. For these and

other programs, speed-up of calculations as a result of parallel execution on

multiprocessor computers is possible. This paper outlines the use of the

OpenMP programming interface and reports its successful application for

parallelization of ESSENS [Kleywegt & Jones (1997). Acta Cryst. D53, 179±185]

and SHELXL [Schneider & Sheldrick (1997).Methods Enzymol. 277, 319±343].

Parallel computing, which is possible as a result of the inherent parallelism of

crystallographic algorithms, extends the range of problems in macromolecular

crystallography that programs can be applied to and can signi®cantly reduce the

time required for progressing from a data set to a re®ned model.

1. Introduction

Computer speed has increased by more than a factor of ten

over the past decade. On the other hand, in recent years, the

methods for crystallization of biologically interesting macro-

molecules or their complexes, with thousands of atoms, have

also improved. This leads to a growing number of projects in

structural biology and a tendency towards larger structures

can be seen. Increases in the total number of beamlines at

synchrotron sites as well as their improved photon ¯ux and

brilliance have made large high-resolution data sets available

for a growing proportion of projects. Furthermore, new CPU-

demanding solutions to crystallographic problems have been

programmed and algorithms from other or related ®elds of

science are being applied to macromolecular data. For these

reasons, crystallographic computing has kept pace in its

demand for ever increasing CPU power.

Among the programs that are quite demanding in terms of

raw CPU power are data reduction programs like XDS

(Kabsch, 1988), MOSFLM (Leslie, 1992) and DENZO

(Otwinowski & Minor, 1997), which, at third-generation

synchrotron sites, can hardly reduce the data as fast as they are

measured. The heavy-atom phasing package SOLVE

(Terwilliger & Berendzen, 1999) and the maximum-entropy

phasing program SHARP (De la Fortelle & Bricogne, 1997),

genetic algorithms for molecular replacement, such as imple-

mented in EPMR (Kissinger et al., 1999), real-space mole-

cular-replacement programs like ESSENS (Kleywegt & Jones,

1997), and re®nement programs like X-PLOR (BruÈnger &

Rice, 1997), CNS (BruÈnger et al., 1998) and SHELXL

(Schneider & Sheldrick, 1997), depend on ample computa-

tional resources. Practical use of some of these programs has

only been made possible by improvements in CPU speed over

the past decade and it can be expected that future improve-

ments in CPU speed will allow further methodological

advances.

Crystallographic computing deals with large numbers of

items, such as atoms, re¯ections, model orientations or

detector pixels, which differ in their individual attributes or

values, but not in the way they are treated by the crystal-

lographic algorithm. This means that, inherently, crystal-

lographic algorithms have a high degree of parallelism.

The purpose of this work is twofold: to demonstrate, taking

ESSENS and SHELXL as examples, that it is worthwhile to

exploit this parallelism, and to outline the use of the

programming interface used for this purpose.

2. Parallelization

2.1. Methods for parallel computing

The basic idea in exploiting the inherent parallelism of an

algorithm is to divide its most time-consuming part into

parallel processes running concurrently on a number of CPUs.

electronic reprint

These processes should interact with one another as little as

possible, as any interaction requires them to be synchronized.

Obviously, to result in wall-clock time savings, the overhead

associated with setting up the processes, distributing the work

between them and synchronizing them must be signi®cantly

less than the time saved by dividing the work.

An algorithm with frequent need for synchronization of

parallel processes is termed `®ne-grained'. As a rule, a speci®c

part of an algorithm can be considered ®ne-grained if the time

spent for useful calculation between synchronization events is

no more than about one order of magnitude longer than the

overhead of synchronization. In practice, parallelization at the

level of an outer loop often produces coarse-grain parallelism

if parallelization of its inner loop would produce ®ne-gain

parallelism. If an algorithm is too ®ne-grained, parallelization

achieves no reduction in overall computing time. Therefore, to

minimize the time wasted as an overhead, a goal of parallel

programming is to produce coarse-grained algorithms, which,

by de®nition, can be ef®ciently executed in parallel.

Clearly, the overhead itself depends on the mechanisms

used for synchronization. Two basic ways of parallel execution

of processes have been developed over the years. First, there

are (among others) the PVM (Parallel Virtual Machine, see

http://www.epm.ornl.gov/pvm/pvm_home.html) and MPI

(Message Passing Interface, see http://www.mcs.anl.gov/mpi)

concepts, which are designed to operate between computers in

a heterogeneous network with possibly different operating

systems and CPU speeds. Both packages have mechanisms to

distribute, set up and synchronize processes on different

computers. However, start-up and synchronization of

processes across a network is a costly operation, and is only

going to result in wall-clock time savings if the bulk of inde-

pendent work in each process is substantial.

The second method can ef®ciently deal with algorithms

requiring smaller chunks of independent work as its overhead

is signi®cantly lower. It requires a multiprocessor (MP)

shared-memory computer equipped with a compiler that

accepts the OpenMP extensions to the C/C++, Fortran 77 and

Fortran 90/95 computer languages. The OpenMP application

programming interface (API) has been developed in the past

few years and is the de facto standard for MP programming. It

is the successor of an ANSI effort for standardization of

vendor-speci®c extensions that were primarily developed for

the Fortran programming language. The OpenMP set of

extensions has been adopted by almost all major suppliers of

compilers and OpenMP compilers are available for most

hardware platforms, such as those produced by SGI/Cray, HP,

Compaq/Digital, Sun, IBM and Intel (for a complete list, see

http://www.openmp.org).

Fortran is, for historical and ef®ciency reasons, the

programming language used for most crystallographic

programs. In its latest incarnations, Fortran 90 and Fortran 95,

most shortcomings of older Fortran dialects have been over-

come without sacri®cing compatibility with existing code.

Especially, those new language elements that allow de®nition

and handling of matrices lend themselves to ef®cient paral-

lelization, and vendors of MP computers often supply opti-

mized parallel libraries and routines. However, existing

programs are mostly written in older Fortran dialects and

array handling is only one aspect of crystallographic

computing. It is therefore important to realise the potential of

OpenMP for parallelization of crystallographic code.

2.2. The OpenMP application programming interface

OpenMP is, by design, a programming interface with little

overhead. It offers a small but ef®cient set of language

constructs (see Table 1) that supports both ®ne- and coarse-

grained parallelism tasks. Whenever two or more tasks of a

program that are normally processed serially are logically

independent from each other, an OpenMP construct allows

these sections to be distributed to concurrent processes (called

`threads').

While OpenMP compilers are often supplied with the

standard compilers of the operating system of MP computers,

automatic parallelizers that generate OpenMP from standard

C or Fortran are not as widely available. Automatic paralle-

lizers can analyse and insert OpenMP extensions into existing

code, thereby hiding the OpenMPAPI from the programmer.

In simple cases, automatic parallelization might be the method

of choice, as it does not require any parallelization effort or

expertise on the part of the programmer. On the other hand,

an automatic analysis of the source code will often only be

able to parallelize small sections of code, as it is dif®cult to

prove independence of code sections by automatic reasoning.

Thus, automatic parallelization generally produces a paralle-

lism that is more ®nely grained compared to what may be

achieved from insight into an algorithm.

Manual parallelization of existing source code with

OpenMP directives requires a basic understanding of its

programming language to reach ®ne-grained parallelism, for

example, at the level of an inner loop. In order to achieve

coarse-grained parallelism, normally in addition a basic

understanding of the underlying algorithm is required,

because parallelization at a higher level requires an insight

into the dependencies between calculations. Sometimes the

original code needs to be slightly changed to uncouple those

sections that are potentially parallelizable, e.g. by introducing

additional temporary variables. This type of change usually

incurs very little or no overhead; therefore, the OpenMP-

adapted code can still be ef®ciently executed on a unipro-

cessor machine.

In most cases, OpenMP directives (Table 1) simply can be

inserted into the code. For a compiler not aware of OpenMP

directives (or with their recognition switched off), the code

appears unchanged, as all OpenMP directives start in column

1 with the pseudo-comment `C$OMP' (or `!$OMP' or `*$OMP'),

and those lines that should only be executed by a parallel

program (conditional compilation) start with the pseudo-

comment `C$ (or `!$' or `*$').

The most basic target of parallelization is the DO loop. As

the most simple example,

J. Appl. Cryst. (2000). 33, 1154±1161 Kay Diederichs � Parallel computing 1155

research papers

electronic reprint

research papers

1156 Kay Diederichs � Parallel computing J. Appl. Cryst. (2000). 33, 1154±1161

Table 1
Important OpenMP constructs.

For complete de®nitions, explanations and examples see http://www.openmp.org. Copyright notice: OpenMP is a trademark of the OpenMPArchitecture Review
Board. This table has been derived from the OpenMP Language Application Program Interface Speci®cation.

Directive Optional clauses² Meaning

Parallel region construct

C$OMP PARALLEL PRIVATE (list) Start a parallel region. The work-sharing constructs
may also be in subroutines called from within the
parallel region

Fortran code with work-sharing constructs

SHARED (list)
DEFAULT (PRIVATE|SHARED|NONE)
FIRSTPRIVATE (list)
REDUCTION (operator|intrinsic:list)
IF (scalar logical expression)

C$OMP END PARALLEL COPYIN (list)

Work-sharing constructs within a parallel region

C$OMP DO PRIVATE (list) The Fortran DO loop should be performed in
parallel. The statement after C$OMP DO will only
be executed once all threads have reached it
(unless NOWAIT is speci®ed)Fortran DO loop

FIRSTPRIVATE (list)
LASTPRIVATE (list)
REDUCTION (operator|intrinsic:list)
SCHEDULE (type[,chunk])
ORDERED

C$OMP END DO NOWAIT

C$OMP SECTIONS PRIVATE (list) The following sections of code should be performed
in parallel. The meaning of NOWAIT is as for the
C$OMP DO directive

FIRSTPRIVATE (list)
LASTPRIVATE (list)
REDUCTION (list)

C$OMP SECTION
Block of Fortran statements³ (more C$OMP SECTION directives could follow)
C$OMP END SECTIONS NOWAIT

C$OMP SINGLE PRIVATE (list) The following block is to be executed by one thread
only. The other threads wait at the statement
following the end single directive unless NOWAIT
is speci®ed

Block of Fortran statements³ FIRSTPRIVATE (list)
C$OMP END SINGLE NOWAIT

Combined work-sharing constructs

C$OMP PARALLEL DO See the clauses of C$OMP PARALLEL and C$OMP DO Shortcut for combining C$OMP PARALLEL with a
single C$OMP DOFortran DO loop

C$OMP END PARALLEL

C$OMP PARALLEL SECTIONS See the clauses of C$OMP PARALLEL and C$OMP
SECTIONS

Shortcut for combining C$OMP PARALLEL with a
single C$OMP SECTIONSC$OMP SECTION

Block of Fortran statements³ (more C$OMP SECTION directives could follow)
C$OMP END PARALLEL SECTIONS

Synchronization constructs

C$OMP MASTER The block is only executed by the master of the
team of threadsBlock of Fortran statements³

C$OMP END MASTER

C$OMP CRITICAL (name) The block is only executed by one thread at a time.
A thread waits for execution until no other
threads execute a section with the same name.
The optional name is a global entity of the
program (this implies that distant sections of code
can be synchronized)

Block of Fortran statements³
C$OMP END CRITICAL (name)

C$OMP BARRIER Threads wait at this directive until all other threads
have reached it, too

C$OMP ATOMIC The assignment statement which immediately
follows is only executed by one thread at a time.
Only certain types of assignment statements are
allowed here

Fortran assignment statement

C$OMP ORDERED The block is executed in the same order as it would
be executed during sequential processing.
Important e.g. for I/O

Block of Fortran statements³
C$OMP END ORDERED

electronic reprint

C$OMP PARALLEL DO SHARED�a; b� PRIVATE�i�
do 100 i � 1; n

a�i� � a�i� � b�i�
100 continue

C$OMP END PARALLEL DO

would distribute the work of adding array b to array a to all

threads. The number of threads can be set at run time with the

environment variable OMP_NUM_THREADS, which is usually

chosen to be less than or equal to the number of processors

and of which the value can be queried with the OpenMP

function OMP_NUM_THREADS(). Distribution of work means

that if nthread = OMP_NUM_THREADS() is the number of

threads, about n/nthread additions would be executed by

each thread.

SHARED(a,b) denotes that all threads use the same storage

locations of arrays A and B. Whenever variables are only read

and not modi®ed, they can be declared as SHARED and can

then be used concurrently by the threads.

Obviously, a problem arises if a thread writes to a storage

location that a different thread reads or writes to, as the order

of operations (`read before write' or `write before read') is

unpredictable and depends on the scheduling of threads by the

operating system. In the above example, this problem only

arises for the variable i, as the threads modify non-over-

lapping parts of array a. Also, many loops require scalar

variables for temporary storage; then the key to successful

parallelization is to assign variables that will be read and

written to by individual threads in a unique way. These vari-

ables have to be declared as PRIVATE, which means that each

thread is given an independent copy of the variable that it can

modify. Variations of the PRIVATE clause address the problem

of proper initialization (FIRSTPRIVATE) of each thread's

temporary copy, or the use of its ®nal value (LASTPRIVATE).

A similar effect could in principle be achieved by explicitly

converting the scalar variable to an array, with each array

element being assigned to one thread. Use of the PRIVATE

clause delegates this task to the OpenMP compiler. A

different way is to convert the body of a DO loop to a

subroutine which is executed by each thread. Then, all local

variables (scalars and arrays) that are modi®ed by the

subroutine will automatically be allocated by the operating

system.

A different problem arises if all threads have to modify a

common scalar variable (e.g. by addition) in each loop itera-

tion, and the result is later used in the program (i.e. the

variable is not only used for temporary storage). In this case, a

REDUCTION clause that speci®es the type of modi®cation

[allowed types are: +,ÿ, *, /, min(), max() and several logical
operators] can be used with the C$OMP PARALLEL directive.

Effectively, this declares the variable as PRIVATE and auto-

matically combines each thread's copies of the variable at the

end of the DO loop according to the type of modi®cation given.

Other clauses can appear with the C$OMP PARALLEL

directive, e.g. the scheduling of loop indices to threads can be

in¯uenced by a SCHEDULE clause, the DEFAULT type of vari-

ables (SHARED, PRIVATE or NONE, which means that all vari-

ables must be declared) in the parallel region can be chosen,

and serial or parallel execution can be chosen based on the

J. Appl. Cryst. (2000). 33, 1154±1161 Kay Diederichs � Parallel computing 1157

research papers

Table 1 (continued)

Directive Optional clauses² Meaning

Data environment construct

C$OMP THREADPRIVATE (list) The list contains names of COMMON blocks containing
thread-private copies of variables that are to be
®lled in by use of the COPYIN clause on the C$OMP
PARALLEL statement

Run-time library routines and functions used to control and query the parallel execution environment

SUBROUTINE OMP_SET_NUM_THREADS() Set the number of threads

FUNCTION OMP_GET_MAX_THREADS() Get the maximum number of threads

FUNCTION OMP_GET_THREAD_NUM() Within a parallel region: get the number of the
executing thread [between 0 and OMP_GET_-
MAX_THREADS() ÿ 1]

FUNCTION OMP_IN_PARALLEL() Return TRUE if called from within a parallel region,
FALSE otherwise

Low-level locking routines

SUBROUTINE OMP_INIT_LOCK() Subroutines to test, set and un-set speci®c locks
SUBROUTINE OMP_DESTROY_LOCK()
SUBROUTINE OMP_SET_LOCK()
SUBROUTINE OMP_UNSET_LOCK()
FUNCTION OMP_TEST_LOCK()

² The purpose of the most important clauses is explained in the text. ³ No GOTO into or out of the block is allowed.

electronic reprint

research papers

1158 Kay Diederichs � Parallel computing J. Appl. Cryst. (2000). 33, 1154±1161

value of a logical expression (IF clause) evaluated at run time.

Support for proper treatment of COMMON blocks is provided

(the COPYIN clause works together with the C$OMP THREAD-

PRIVATE directive).

A parallel program can be developed, compiled and tested

on a single-processor workstation; upon execution, the threads

are all started on the same CPU and perform the same work as

on an MP computer, albeit normally (i.e. unless input/output

can overlap computation) without savings in wall-clock time.

If the user requests more threads than available processors,

the total wall-clock time may rise considerably in the case of

®ne-grained parallelization constructs, as their synchroniza-

tion requires frequent task switches.

De®nition of the OpenMP parallelization API, a tutorial on

parallelization techniques and other OpenMP-related links

can be found at http://www.openmp.org. A Web-accessible

program for automatic insertion of OpenMP directives into

existing Fortran 77 code is available at http://punch.-

ecn.purdue.edu. It is based on the Polaris parallelizing

compiler (Blume et al., 1996), which represents the current

state-of-the-art in automatic parallelization.

3. Parallelization of crystallographic code

3.1. A simple example program: CRYSDEMO

A small self-contained example (CRYSDEMO) that makes

use of the OpenMP API for parallelization of a typical crys-

tallographic calculation (direct summation of structure

factors) is presented in Fig. 1. No effort was made to choose a

particularly ef®cient algorithm or implementation for this

task.

Normally, the effort exerted by an OpenMP programmer

must be weighted against the speed-up reachable, which would

suggest that in practice only the parallelization of the

computational part would be employed for this program.

However, for demonstration purposes, all possible aspects of

input/output and calculation were parallelized. This also

illustrates the possibility of incremental changes to a program,

which is one design goal of OpenMP.

In CRYSDEMO, ®rst a coordinate ®le [Protein Data Bank

(PDB) format] and a re¯ection ®le (free format) are read in by

two threads executing simultaneously. In many practical cases,

the number of re¯ections will signi®cantly exceed the number

of coordinate records. However, during or after coordinate

input, bookkeeping and analysis of coordinate records may be

performed by the same thread, so that the computational

workload appears to be approximately balanced between the

two threads.

In the second half of the program, structure factors are

calculated from coordinates assuming, for simplicity, equal

point-scatterers in space group P1 (a = 70, b= 80, c = 90 AÊ , �=
� = = 90�). For direct summation of scattering factors, all

available threads are used. The number of threads is requested

by a statement that is subject to conditional compilation. As

the outer loop, which runs over the atoms, can be parallelized,

the parallelism reached is coarse-grained.

Finally, the crystallographic R factor between observed and

calculated structure-factor amplitudes is calculated, again

using the REDUCTION clause.

Figure 1
A simple crystallographic program (available from http://strucbio.
biologie.uni-konstanz.de/~kay).

electronic reprint

3.2. Parallelizing ESSENS

ESSENS (about 1300 lines of Fortran 77 code) is a program

for real-space molecular replacement when estimates of

phases are available. It rotates and translates a template PDB

®le through an experimental electron density and calculates a

score for the match of the template and the electron density

for each rotation/translation combination. The score can also

be used to obtain a map that visualizes the match of, say, an

alpha helix template to the electron density, and can therefore

make map interpretation easier. A separate program,

SOLEX, extracts the best rotation/translation combinations

from the ESSENS output.

ESSENS is an attractive option for a crystallographer who

cannot solve the molecular-replacement problem for a

protein, but has obtained an experimental map from single/

multiple isomorphous replacement (SIR/MIR) or multiple

anomalous scattering (MAD) data. Even if the map cannot be

interpreted right away, it is often possible with ESSENS to ®nd

those rotation/translation combinations that position a similar

molecule into the map in the optimal fashion. As the program

uses all available amplitude and phase information, it

produces a signi®cantly higher signal-to-noise ratio than

molecular-replacement programs that only use the amplitude

information. ESSENS can be expected to be of importance in

the context of structural genomics, where procedures for

automatic structure solution are required.

Because of the six-dimensional nature of the search, the

computer time required to position a model is substantial; it

can be in the region of several days. On the other hand, the

calculation with its six nested DO loops (three rotation and

three translation variables) lends itself naturally to ef®cient

parallelization. This most CPU-demanding part of the

program was put into a separate subroutine, which is called

once by each thread. Each thread then treats all rotation

possibilities but only its particular fraction of translation

space. Only one parallelization directive was used. No

synchronization between the threads has to occur; therefore,

the program would also be well suited for distribution across

different computers with the help of the PVM or MPI inter-

face.

To test the potential for automatic parallelization, the

program was also compiled using the -apo option of the SGI

f 77 compiler. However, no substantial speed-ups were

obtained and inspection of the generated code showed that

only ®ne-grained parallelism had been detected by the

compiler.

The parallelized version of ESSENS is distributed in binary

form for the SGI and Compaq Alpha platforms by the author

of the original code (e-mail: gerard@xray.bmc.uu.se).

3.3. Parallelizing SHELXL

SHELXL (Schneider & Sheldrick, 1997) is a program

(about 18800 lines of Fortran 77 code) originally developed

for small-molecule re®nement, but also available in a version

that has been dimensioned for protein re®nement. It uses

direct summation for the evaluation of structure factors and

their derivatives, and is therefore slow when compared with

macromolecular-re®nement programs, such as X-PLOR

(BruÈnger & Rice, 1997), CNS (BruÈnger et al., 1998), TNT

(Tronrud, 1997) and REFMAC (Murshudov et al., 1997), which

employ the fast Fourier transform. However, the SHELXL

options, such as anisotropic re®nement of displacement

parameters, automatic assignment and re®nement of hydrogen

positions, handling of disorder and multiple conformations,

estimation of positional uncertainties and proper treatment of

twinning, make SHELXL ideal for high-resolution re®nement

of macromolecules.

SHELXL is highly optimized for speed in the uniprocessor

case and the program has undergone a long evolution. As a

result, it does not employ `structured programming' in the

sense of using IF . . . THEN . . . ELSE . . . ENDIF statements and

avoiding GOTO statements. To comply with earlier versions of

Fortran, calculations with complex quantities are emulated

using REAL variables and only one-dimensional arrays are

used for storage.

Pro®ling the program with the tools (ssrun, prof)

provided by the Irix operating system showed that about 85%

of the total CPU time is spent in subroutine SX3H and the

low-level subroutines for matrix and trigonometric operations

called by it. SX3H is the subroutine that calculates the struc-

ture factors and their derivatives during re®nement cycles,

populates the normal matrix, solves it for atomic parameter

shifts and applies these, and is therefore the central part of the

program. As the calculation in principle resembles that of

CRYSDEMO, it was clear that ef®cient parallelization could

be achieved by distributing the re¯ections to parallel threads.

For historical reasons, SHELXL applies a `blocking' tech-

nique by dividing the re¯ection array into blocks of a few

hundred re¯ections, performing all relevant calculations on

these, and later combining the results of those calculations.

This technique ensures that the program runs ef®ciently on

uniprocessor computers with very little memory, but it also

prevents coarse-grain parallelism without considerable

changes of the source code.

Finding a way to parallelize this program ef®ciently there-

fore presented a considerable challenge. Only after eluci-

dating the correspondence of code sections of SX3H to the

tasks required for crystallographic re®nement was it possible

to ®nd the appropriate coarse-grain parallel constructs and

thus to avoid unnecessary synchronization delays. In parti-

cular, it turned out to be inef®cient to parallelize all the low-

level subroutines called by SX3H as these are called once or

multiple times for each atom and block of re¯ections. Rather,

a parallel construct was designed (requiring minor changes to

the source code) that assigns a sub-block of re¯ections to each

thread. The thread then loops over all atoms, calling the

relevant low-level subroutines in turn, and thus avoids

frequent start-ups of new threads and costly synchronization

periods.

After parallelizing this central part of SHELXL, further

pro®ling runs were performed and additional targets for

parallelization were identi®ed in subroutines SX3G, SXMM

and SX3N. In these subroutines, ef®cient parallelization could

J. Appl. Cryst. (2000). 33, 1154±1161 Kay Diederichs � Parallel computing 1159

research papers

electronic reprint

research papers

1160 Kay Diederichs � Parallel computing J. Appl. Cryst. (2000). 33, 1154±1161

also be achieved; however, the impact of these changes on the

total CPU time used was minor compared to the savings made

by parallelization of SX3H. In SX3G, the same parallel

construct could be used as that applied in SX3H. The source

code also had to be changed in both SXMM and SX3N; in

SX3N a loop constructed using GOTO and IF was converted to

a DO loop and a ®ne-grained parallelization directive inserted.

Understanding the use of temporary variables in SXMM was

possible after submitting the relevant part of the subroutine to

the Polaris service (http://punch.ecn.purdue.edu); inspection

of the returned Fortran code allowed identi®cation of the

suitable synchronization construct.

Again, the possibility of automatic parallelization of

SHELXLwas tested with the SGI f 77 compiler. As in the case

of ESSENS, only ®ne-grained parallelism was detected.

The OpenMP changes are being included in the distributed

version of SHELXL (release 97±2), which is available from its

author (e-mail: gsheldr@shelx.uni-ac.gwdg.de).

4. Results

4.1. Efficiency of parallelization

The speed-up S(p) obtained when executing a program on

p processors is de®ned as

S� p� � T�1�=T�p�;

where T(1) and T(p) are the turnaround times with one

processor and with p processors, respectively. The ef®ciency

E(p) is then de®ned as

E� p� � S� p�=p:

For a perfectly parallelized program with T(p) = T(1)/p, we

obtain

S� p� � p; E� p� � 1:

In theory, any program can be decomposed into a parallel part

(of fraction f) that bene®ts from parallelization, and a serial

part (fraction 1ÿ f) that will not. Only if the serial part is non-

existent can the program be perfectly parallelized, obtaining

an ef®ciency of 1. However, all real programs have a signi®-

cant serial part and it is this fraction of the program that limits

performance on an MP computer and poses an upper limit on

the ef®ciency. This is summarized in Amdahl's law, which

states that

S� p� � 1=� f=p� 1ÿ f �:
It follows that the maximum speed-up is S(1) = 1/(1 ÿ f) and

that f can be calculated from the observed speed-up as

f � p�S� p� ÿ 1�=�S� p�� pÿ 1��:

4.2. Speed-up in CRYSDEMO, ESSENS and SHELXL

For the programs used for this study, the speed-up of

parallel computation when compared with the uniprocessor

case is shown in Table 2.

CRYSDEMO is only meant to demonstrate the principle.

Clearly, the bene®ts of parallelization efforts are minor, as the

total savings in wall-clock time are only of the order of

seconds. The total time is in¯uenced by the input of coordi-

nates and structure factors; factoring out this component

would show that the rest of the calculation is highly parallel.

Other test programs developed by the author demonstrate

that for simple trigonometric evaluations performed in a loop,

parallelization becomes bene®cial in terms of wall-clock time

if the loop count is higher than a few hundred (SGI Origin

2000, SGI Octane) to a few thousand (Compaq ES40).

Therefore, even the ®ne-grained R factor loop of CRYS-

DEMO bene®ts considerably

from parallelization if the

number of re¯ections is high

enough.

The very coarse-grained

parallelization in ESSENS

bene®ts most from execution on

an MP computer, as its serial

fraction 1 ÿ f is quite low (about

0.03). As only a single OpenMP

directive was used, ESSENS has

a potential for further paralleli-

zation in its ®nal stages of

statistical calculations. For small

problems, this fairly trivial opti-

mization would decrease the

wall-clock time even more.

SHELXL displays a more

signi®cant serial fraction 1 ÿ f

between about 0.12 (BIG case)

and 0.35 (6RXN), which leads to

diminishing improvements in

Table 2
Wall-clock times (s), speed-ups relative to uniprocessor calculation and calculated parallel fractions.

All times were obtained on an SGI Origin 2000 equipped with 250 MHz R10000 processors under Irix 6.5.5, Fortran
77 version 7.3. Calculations with one to four processors were also performed on a Compaq Alpha server ES40 with
500 MHz Alpha 21264 processors under OSF1 V4.0F, Fortran 90 version 5.2. Similar results were obtained for wall-
clock times and speed-up.

SHELXL
CRYSDEMO² ESSENS³ 6RXN§ BIG }

One processor Time (s) 29 15437 33 29346
Two processors Time (s) 16 8034 25 16165

Speed-up 1.81 1.92 1.32 1.82
Parallel fraction 0.90 0.96 0.48 0.90

Three processors Time (s) 12 5363 19 12120
Speed-up 2.42 2.88 1.74 2.42
Parallel fraction 0.88 0.98 0.64 0.88

Four processors Time (s) 10 4162 16 10081
Speed-up 2.9 3.71 2.06 2.91
Parallel fraction 0.87 0.97 0.69 0.88

Eight processors Time (s) 6 2180 14 7625
Speed-up 4.83 7.08 2.36 3.85
Parallel fraction 0.91 0.98 0.66 0.85

² 1151 atoms, 131 819 re¯ections. ³ 370 atoms, 1183 rotations (30� grid), 3 455 881 grid points in map. § 5031 re¯ections, 438
atoms, 10 CGLS cycles (SHELXL example: re®nement of rubredoxin). } 32 281 re¯ections, 3480 atoms, 10 CGLS cycles
(re®nement of a 363 amino acid protein at 2 AÊ resolution).

electronic reprint

turnaround times with more than four processors (Table 2).

Still, the speed-up in SHELXL is between two and three when

four processors are used, which represents signi®cant savings

in wall-clock time. It should be noted that often larger

problems than BIG occur in high-resolution re®nement of

macromolecules. In these cases, a speed-up of three on a four-

processor computer is highly desirable, and the inef®ciency

associated with E(4) = 0.75 appears to be tolerable.

It is interesting to note that the BIG problem in SHELXL

displays a signi®cantly larger speed-up than the 6RXN case,

which shows that parallelization is comparatively more

bene®cial for large problems. This is due to the fact that an

increase in the number of data that are processed by the

parallel threads can turn ®ne-grained parallelism into coarse-

grained.

5. Concluding remarks

Given existing plans for high-throughput structure determi-

nation in `structural genomics' projects, based on the enor-

mous rate of data collection at current third-generation

synchrotrons, a decrease in computational turnaround times

will continue to be mandatory. MP computers already exist in

many crystallographic laboratories and at synchrotron sites,

and, although they constitute considerable investments, their

potential is often not fully realised. Rather, they are often

utilized like clusters of uniprocessors with a common

management.

The purpose of this paper is therefore twofold. First, it

reports the availability of an extension to existing program-

ming languages that could be used for the speed-up of crys-

tallographic calculations if a multiprocessor computer is

available. This has the potential of decreasing the time needed

for progressing from a data set to a re®ned atomic model.

Second, it demonstrates the successful application of this tool

to two programs which are vastly different in terms of code

complexity. In both cases, it was not required that the original

author of the program ported the program into its parallelized

form. As the adaptation of existing code to OpenMP can be

performed in an incremental way, it appears that crystal-

lographic programs that are well structured and documented,

and are distributed in source code, will bene®t most from the

application of a de facto standard for parallelization.

The author wishes to thank R. Eigenmann, G. Kleywegt, G.

Sheldrick and W. Welte for critical reading of the manuscript,

and the computing centres of the universities of Freiburg and

Konstanz for access to their SGI Origin 2000 and Compaq

ES40 computers, respectively.

References

Blume, W., Doallo, R., Eigenmann, R., Grout, J., Hoe¯inger, J.,
Lawrence, T., Lee, J., Padua, D., Paek, Y., Pottenger, B.,
Rauchwerger, L. & Tu, P. (1996). IEEE Comput. (December
1996), pp. 78±82.

BruÈnger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P.,
Grosse-Kunstleve, R., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu,
N. S., Read, R. J., Rice, L. M., Simonson, T. & Warren, G. L. (1998).
Acta Cryst. D54, 905±921.

BruÈnger, A. T. & Rice, L. M. (1997).Methods Enzymol. 276, 366±396.
De la Fortelle, E. & Bricogne, G. (1997).Methods Enzymol. 276, 472±
494.

Kabsch, W. (1988). J. Appl. Cryst. 21, 916±924.
Kissinger, C. R., Gehlhaar, D. K. & Fogel, D. B. (1999). Acta Cryst.
D55, 484±491.

Kleywegt, G. J. & Jones, T. A. (1997). Acta Cryst. D53, 179±185.
Leslie, A. G. W. (1992). Joint CCP4/ESF-EACMB Newsl. Protein
Crystallogr. No. 26.

Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Acta Cryst.
D53, 240±253.

Otwinowski, Z. & Minor, W. (1997).Methods Enzymol. 276, 307±326.
Schneider, T. R. & Sheldrick, G. M. (1997). Methods Enzymol. 277,
319±343. New York: Academic Press.

Terwilliger, T. C. & Berendzen, J. (1999). Acta Cryst. D55, 849±861.
Tronrud, D. E. (1997). Methods Enzymol. 277, 306±319.

J. Appl. Cryst. (2000). 33, 1154±1161 Kay Diederichs � Parallel computing 1161

research papers

electronic reprint

