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Chapter 10

Crystallographic Data and Model Quality

Kay Diederichs

Abstract

This article gives a consistent classification of sources of random and systematic errors in crystallographic 
data, and their influence on the averaged dataset obtained from a diffraction experiment. It discusses the 
relation between precision and accuracy and the crystallographic indicators used to estimate them, as well 
as topics like completeness and high-resolution cutoff. These concepts are applied in the context of pre-
senting good practices for data processing with a widely used package, XDS. Recommendations are given 
for how to minimize the impact of several typical problems, like ice rings and shaded areas. Then, proce-
dures for optimizing the processing parameters are explained. Finally, a simple graphical expression of 
some basic relations between data error and model error is suggested.

Key words X-ray crystallography, Accuracy, Precision, Random errors, Systematic errors, Merged 
data, Unmerged data, Indicators

1 Introduction

In the last decades, crystallography has been highly successful in 
delivering structural information about proteins, DNA, and RNA, 
the substrates of life on earth. The resolution of the method is 
good enough to discern the three dimensional structure of these 
macromolecules at the atomic level, which is essential to under-
stand their diverse properties, functions and interactions. However, 
although it is easy to calculate the diffraction pattern for a given 
structure, the reverse task of deriving a molecular structure from 
just a single set of unique diffracted intensities is difficult, as 
the mathematical operation governing the former direction cannot 
be inverted in a unique way. To be solved experimentally, this 
“inverse problem,” or more specifically “phase problem,” requires 
more than just a single set of unique diffraction data. High quality 
of the data is a requirement for the experimental solution of the 
problem, but also for the refinement of the macromolecular struc-
ture, as discussed in Subheading 4.
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The correct biological interpretation requires the best possible 
model of the macromolecule. To obtain the best model, every step 
of the structure determination procedure has to be performed in a 
close-to-optimal way. This means that the purification of the mac-
romolecule, its crystallization, crystal handling, measurement of 
diffraction data, processing of the resulting datasets, and down-
stream steps such as structure solution, refinement, and validation 
each constitute scientific tasks that deserve specific attention, and 
have been undergoing continuous enhancements throughout the 
history of macromolecular crystallography.

Two kinds of numerical data are the result of a crystallographic 
experiment and usually deposited as such in the Protein Data Bank: 
the diffraction intensities as a reduced representation of the diffrac-
tion experiment, and the atomic coordinates resulting from the 
visual inspection and interpretation of electron density maps, and 
subsequent refinement. A third kind of numerical data, the raw 
data (frames) obtained in the diffraction experiment, have so far 
not been usually deposited in long-term archives, mainly due to 
(disk) space concerns. This is unfortunate since archiving of raw 
data would enable reprocessing of incorrectly processed data as 
well as enabling and taking advantage of future improvements in 
methodology, like extracting the diffuse scattering information.

The discussion focuses on data that correspond to a single 
atomic model. This rules out all the complications that arise from 
merging of non-isomorphous datasets, where each individual data-
set corresponds to a different model—in this situation, a merged 
dataset would represent something like an average model, which 
violates the physicochemical requirements, and may not be bio-
logically meaningful.

This chapter first presents the principles and concepts that 
need to be understood in the context of the rather broadly used 
term “data quality”; similar presentations may be found for exam-
ple in refs. [1–3]. Second, the application of these principles to 
data processing with the XDS program package [4, 5], which the 
author is most familiar with, is explained. Third, data and atomic 
model are related in a graphical way, which allows some important 
and nontrivial conclusions to be drawn about how the former 
influence the latter.

2 Errors and Crystallographic Indicators

The goal of a crystallographic experiment is to obtain accurate 
intensities I(hkl) for as many Bragg reflections hkl as possible. I 
discuss two kinds of errors, random and systematic error, which 
exist in any experiment. A major difference between them is that 
the relative error arising from the random component decreases 
with increasing intensity, whereas the relative error in intensity 
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from the systematic component is (at least on average) constant, 
often in the range between 1 and 10 %. A more specific descrip-
tion for systematic error would thus be “fractional error,” but this 
name is not in common use. Nonlinear errors also exist, but play 
a minor role.

A well-designed crystallographic experiment has to strike an 
appropriate compromise between the two kinds of error. For 
example, a reduction of random error (see below) can be obtained 
by longer or stronger exposure of the crystal, but this will inevita-
bly increase the systematic error from radiation damage to the 
crystal. Ideally, the sum of both errors should be minimal, and 
programs, e.g., “BEST” [6], exist that suggest a compromise, in 
the form of a proposed “strategy” for the experiment. Fortunately, 
the gradient of the sum of both errors is close to zero at and near 
the optimal strategy, which means that small deviations from the 
optimal strategy do not substantially decrease data quality.

The discussion of errors has to take the distinction between 
precision and accuracy into account. The term “precision” refers 
to the reproducibility of an experiment, and to the internal consis-
tency or relative deviation of the values obtained. For example, if 
the number e = 2.718… should be determined in an experiment, 
and two measurements would yield the values 3.217 and 3.219, 
then these measurements are considered precise, because they 
agree well with each other—their relative deviation is small. 
However, they are not close to the true value—the error (or inac-
curacy) in their measurement amounts to about 0.5.

The term “accuracy,” on the other hand, refers to the devia-
tion of measured values from the true values. In this example, if 
two measurements would yield the values 2.6 and 2.8, then the 
results from this experiment are more accurate than that from 
the previously mentioned experiment, although they are not as 
precise.

Optimizing an experiment for precision alone therefore does 
not ensure accuracy; rather, equating accuracy with precision also 
requires the absence of any kind of error that has not been taken 
into account in the precision estimate. To estimate accuracy, we 
thus need to quantify both the precision of the data, and the unde-
tected error (which usually requires some knowledge about the 
true value obtained by other means). If both can be quantified, we 
can estimate the accuracy as the absolute or relative error of a 
measurement.

The crystallographic experiment measures the number of photons 
contributing to each detector pixel. These photons arise from 
Bragg reflections, but also from background scatter. The number 
of photons in each pixel is subject to random fluctuations. These 
are due to the quantum nature of photons; there exists a certain 
probability of emission of a given photon by the crystal into a given 
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pixel in a unit of time, and each photon’s emission into that pixel 
is independent from that of other photons. As a result, photon 
counts are governed by Poisson (counting) statistics, which math-
ematically means that the variance of the photon number is equal 
to the photon number itself. Furthermore, a CCD detector may 
contribute a random component (“read-out noise”) to the total 
photon count (pixel detectors are almost noise-free), which is also 
due to quantum fluctuations in the detector hardware and may be 
considered as additional background.

Data processing software essentially adds the counts of the pix-
els belonging to each reflection, and subtracts an estimate of the 
background in each pixel, to give I(hkl), the intensity of the Bragg 
reflection. The variance of I(hkl) may be calculated, using the rules 
of error propagation, from the known variances of each contribu-
tion to I(hkl); its square root will be called σ0(hkl) in the following. 
For strong reflections, where the background is negligible, this 
procedure gives a precision, expressed as relative random error in 
I(hkl), of σ0(hkl)/I(hkl) ~ 1/√I(hkl).

The relative amount of the random error may be reduced by 
repeating the experiment, and averaging the results of the indi-
vidual experiments. As the laws of error propagation show, the pre-
cision of the estimate of the averaged intensity is improved by a 
factor of √n over that of an individual measurement, if n is the 
number of repeated experiments with independent errors. Thus, 
the precision of the averaged (also called “merged”) data may be 
high even if the precision of each individual observation is low.

The square root function appears both in the relative error of 
a photon count arising from Poisson statistics, and in the improve-
ment of precision from averaging of multiple measurements. It is 
important to realize that the mathematical reasons for the occur-
rence of the square root differ. Nevertheless, the fact that the 
square root occurs in both situations means that the relative error 
is in principle the same whether a reflection is measured ten times 
and averaged, or measured just once, but with ten times stronger 
exposure or ten times as long.

A high number (multiplicity, sometimes called redundancy) of 
observations of each unique reflection, together with low exposure 
of each observation, is therefore equivalent in terms of the preci-
sion of the merged data, to an experiment in which each unique 
reflection is just measured once, but exposed proportionally stron-
ger. Thus, if only random error is considered, there would be no 
reason to perform experiments with high multiplicity.

The term “systematic error” summarizes all types of error that are 
not purely random in nature, and these are due to macroscopic 
physical or technical properties of the experimental setup, the crys-
tal, and the processing of its data. For instance, systematic errors 
may arise from imperfect spot shapes (split crystal), radiation 
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 damage, absorption differences due to crystal shape and mounting, 
shutter synchronization problems, imperfect detector calibration 
and inhomogeneity of detector sensitivity, shadowed parts of the 
detector, nonlinear or overloaded detector, vibrations for example 
due to the cryo stream or fluctuations of the primary X-ray beam, 
imperfect or inaccurate assumptions about geometric parameters 
and computational models applied in the data processing step, and 
to other problems that may be significant for a given experiment.

Systematic error may appear to be random if its cause is 
unknown or cannot be fully described or modelled, but contrary to 
random counting error, the change of a reflection’s intensity is 
usually (at least on average) proportional to the intensity itself—
thus the term “fractional error.” For example, a fluctuation in 
beam intensity changes all intensity values by the same percentage; 
absorption in the crystal or loop changes intensities in proportion 
to their original value; and using, during data processing, a mosaic-
ity value that is too low, or a summation (integration) area that is 
too small, will chop off a certain fraction of the intensity.

Contrary to random error, the relative error of a single obser-
vation is not decreased by higher flux or longer exposure. However, 
many kinds of systematic errors in a crystallographic experiment at 
least partially cancel out if multiple measurements are averaged. 
This is the case if the experiment samples the possible values of the 
error term multiple times, in an even (or at least random) and 
unbiased way. Examples are beam instability, shutter problems, and 
most aspects of detector non-ideality, except those that result in 
nonlinear response (e.g., overload). Their influence on the final 
averaged data is decreased by averaging of n independent observa-
tions, and indeed the reduction of error then follows the same √n 
rule as applies to random error.

These kinds of systematic error may thus be considered as 
benign: their influence on the merged data may be mitigated by 
distributing the total experimental time and dose over many obser-
vations, or by collecting multiple datasets [7]. It is therefore sys-
tematic error, not random error, that mandates the collection of 
data over more than the absolute minimum of rotation range 
required for obtaining complete data. However, it is important to 
realize that after a full turn of the spindle, all those systematic 
errors that depend on the geometry of the experiment will be 
exactly repeated. It is thus highly advisable to change the crystal 
setting on the goniostat after at most 360°.

If all or most observations of a unique reflection are systemati-
cally affected in the same or a similar way, their systematic errors 
are not independent, and averaging may not necessarily decrease 
the systematic difference between true and estimated intensity (the 
accuracy). Known or well understood effects may often be mod-
elled by analytical or empirical formulas. If a model for the specific 
error type is available and appropriate, the systematic difference is 
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accounted for, and any remaining difference between intensities 
may become a useful signal. In this way, a systematic effect may 
become a part of an extended description of the experiment, and 
does no longer contribute to the experimental error.

An example for this is absorption by the crystal and its environ-
ment (loop, mother liquor)—if it can be properly modelled, its 
influence is compensated. However, in low-symmetry space 
groups, all symmetry-related reflections may systematically be 
weakened or strengthened in the same way. Since only those sys-
tematic errors that lead to systematic differences can be corrected, 
no information about the proper absorption correction is available 
in this case. Therefore, at least one additional dataset should be 
measured in a different orientation of the crystal. The systematic 
absorption difference between the two resulting datasets may then 
be detected and corrected in software. It should be noted that even 
if absorption is not corrected in the data processing stage, it can be 
approximately compensated by an overall anisotropic overall dis-
placement parameter in the refinement stage. This parameter then 
should not be interpreted as its name suggests, but rather as a com-
pensation factor for an experimental property.

Importantly, for strong reflections (low resolution), systematic 
error is usually higher than random error; the converse is true for 
weak reflections (high resolution), where the signal-to-noise ratio 
is usually dominated by the random error term. However, radia-
tion damage, the most devastating kind of systematic error, is an 
exception to this rule. Radiation damage, which changes (and ulti-
mately destroys) the structure of the macromolecule during the 
measurement, induces a systematic error that is not mitigated by 
averaging of multiple observations, because it results in intensity 
measurements that do not scatter around a true value, but rather, 
with increasing dose, deviate further and further from the true 
value—the intensity at the beginning of the experiment.

The detrimental influence of radiation damage has to be 
avoided to a degree that depends on the kind of experiment, and 
its desired goal. In recent years, there has been some progress in 
describing the relation between dose and its footprint on the mac-
romolecule [8, 9]. Furthermore, the influence of radiation damage 
may be partially compensated by zero-dose extrapolation, a com-
putational technique [10]. However, it should be noted that the 
relative change of intensities by radiation damage is biggest at high 
resolution, where the signal may be so weak (i.e., the individual 
measurements so imprecise) that zero-dose extrapolation becomes 
inaccurate.

The error estimates σ0(hkl) obtained during integration of observa-
tions, being only based on counting statistics, are lower than the 
actual differences between intensities of symmetry-related observa-
tions, because the latter include the differences due to systematic 
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errors. To account for the full difference, and thus to arrive at more 
useful error estimates σ(hkl), the scaling and merging procedures 
operating on multiple reflections inflate the estimated error using 
an empirical formula [3, 11] that employs separate scale factors for 
the random and the systematic error. This modification of error 
estimates works quite well in practice, and the coefficients of the 
formula (the “error model”) can be used to obtain an estimate of 
the systematic error of the dataset. The resulting estimate can be 
expressed as an “asymptotic signal-to-noise ratio,” abbreviated ISa 
[11]. ISa gives the numerical value of I/σ for a hypothetical, infi-
nitely strong reflection in the dataset, after adjustment of its σ by 
the new error model. If no systematic errors would exist, ISa would 
be infinite, since σ would be, from Poisson counting statistics, just 
the square root of I. However, real experiments are never ideal, 
which is why ISa is finite. ISa does not depend on the random 
error, making it insensitive to for example crystal size, mosaicity, 
exposure time, and flux, and is thus on an absolute scale.

The author has processed many datasets from different syn-
chrotron beamlines and detectors. Empirically, it is found that 
datasets from CCD detectors rarely have ISa bigger than 30; data-
sets from pixel array detectors may have ISa values about twice as 
high compared to datasets from the same crystals collected on 
CCD detectors. This means that the use of a pixel array detector at 
a very stable beamline in an experiment with a good crystal may 
result in down to half the systematic error, compared to a CCD 
detector, and demonstrates the importance of detector technology. 
Conversely, if a split crystal, or a dataset with strong radiation dam-
age, is measured on a perfect beamline, ISa may be as low as 10 
(i.e., meaning that even the strongest reflections in the dataset will 
have signal-to-noise less than 10). Likewise, a good crystal may 
give a low ISa when the experimental setup or beam suffers from 
instability, or the cryo stream makes the crystal vibrate.

Data processing programs implement simplified or idealized 
assumptions about the experiment, and thus may themselves con-
tribute some systematic error. To investigate the magnitude and 
properties of the systematic error from data processing, the author 
wrote the program SIM_MX [12] that allows to simulate complete 
datasets with specified amounts of random and systematic errors. 
A simulated dataset with only random error should ideally produce 
an ISa of infinity. However, the data processing program that the 
author is most familiar with (XDS), in this situation gives ISa well 
above 100. This means that if a good crystal is used to obtain a 
dataset, the overall systematic error, as measured by ISa, is mostly 
due to deficiencies of the experimental setup, and not due to short-
comings of the data processing program. Unfortunately, a general 
weakness of the analysis of systematic error is that the simple error 
model usually employed does not allow to identify and thus cor-
rectly model the exact source of systematic error.
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Conceptually, it is almost always impossible to accurately 
 measure the systematic error, since the true intensities are unknown 
and not measurable. Obviously, ISa underestimates the overall sys-
tematic error, as only those systematic errors that lead to systematic 
differences enter its calculation. In my research group, we usually 
find that upon scaling two or more datasets together, the new error 
model for each dataset, which is calculated by the scaling program 
(XSCALE), almost always leads to a reduction of its ISa. This is 
due to the fact that only by comparing datasets can some system-
atic errors be detected.

For isomorphous datasets (e.g., same crystal but different ori-
entation) which are >90 % complete, have average multiplicity of 3 
and more, and have higher symmetry than triclinic, we find that 
the reduction of ISa is usually less than 10 %. Therefore, the under-
estimation of the systematic error by ISa is usually minor.

If non-isomorphous crystals are scaled and merged and the 
error model is recalculated, the newly determined ISa values have 
to account for the systematic differences arising from differences in 
unit-cell parameters and crystal contents, and may then be much 
reduced.

In crystallography, indicators to describe aggregated properties of 
the data are necessary because the number of reflections is so large 
that it is prohibitive to inspect individual reflections. The availabil-
ity of multiple observations (called “multiplicity” or “redundancy”) 
allows their precision to be measured.

Historically, Rsym was proposed by Arndt [13] for analysis of 
data from the first electronic area detectors. At the time, his inter-
est was to create an indicator for how reproducibly the data are 
measured with these devices. This lead him to use a formula simi-
lar to the “R-factor,” which has been in use since before the mid-
dle of last century (for example in [14]), and compares the 
experimental amplitudes with those derived from a model. His 
formula
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calculates the relative absolute deviation of intensity measurements 
from their mean value. Rsym has been in use since then, but renamed 
to Rmerge probably because the formula can also be applied when 
merging symmetry-equivalent observations obtained from one or 
more crystals. Rmerge measures the precision of the individual mea-
surements (observations) of the intensities, and takes both the 
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random and systematic error into account, in as far as the latter 
leads to differences in symmetry-related reflections.

It turned out that Rmerge, as originally defined, has the flaw that 
for low multiplicity datasets it makes the precision appear to be 
better than it really is (by up to a factor of √2; [15]). This can be 

fixed by including a factor 
n

n
i

i -1
 in the numerator [15], and the 

resulting precision indicator is called Rmeas (or Rr.i.m.; [16]). Even 
though it more accurately reflects the precision of the data, it has 
unfortunately not been fully adopted by the crystallographic com-
munity; mainly, I assume, for the psychological reason that Rmeas 
has a higher numerical value than Rmerge.

Another measure of precision of intensities is the average I/σ 
ratio of the observations, ‹I/σ›obs. Rmeas and ‹I/σ›obs obey 
Rmeas ~ 0.8/‹I/σ›obs. This approximate relation is valid provided 
that the error model has been adjusted such that χ2, an indicator of 
the agreement between estimated and observed differences 
between symmetry-related observations, is near 1, and provided 
that ‹I/σ› is a good approximation of ‹I›/‹σ›. For a given dataset, 
these approximations are usually well fulfilled at high resolution. 
Nevertheless, the error models of different data processing pro-
grams usually yield quite different estimates of the σ(hkl) and 
‹I/σ›obs values [17].

A precision indicator like Rmeas or ‹I/σ›obs is only useful in com-
parisons of datasets if the multiplicity of observations in the com-
pared datasets is approximately the same. However, neither 
measure is useful for defining, for instance, a high-resolution cutoff 
since it does not take into account the obvious fact that multiple 
observations increase the precision.

The low-resolution Rmeas value of a strongly exposed crystal 
mainly measures detectable systematic error and may therefore be 
considered another indicator of systematic error. This may explain 
the historical popularity of the related (but less suitable) Rsym value 
for (broadly) characterizing the “quality” of a dataset.

With one exception [18], merged data are used in all crystallo-
graphic calculations after the data processing step. Statistics refer-
ring to merged data are thus much more important than those 
referring to unmerged data, and ignorance or misunderstanding of 
this fact has led to common misconceptions about for example the 
choice data collection strategy, the choice of dataset to refine 
against, the possibility of merging of datasets, and about a suitable 
high-resolution cutoff [19].

In 1997, Diederichs and Karplus [15] therefore introduced a 
specially defined R-value which takes the multiplicity of observa-
tions into account, and calculates the precision of the merged data. 
This quantity, Rmrgd-I, measures the differences between merged 
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intensities from two randomly selected subsets of the data. It is not 
in common use, but Rsplit,

 

R
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which is the same as Rmrgd-I except for a factor of 1/√2 and a sim-
plified assignment of measurements to subsets, is in use by the Free 
Electron Laser community [20]. An equivalent quantity, Rp.i.m. 
(“precision indicating merging R-factor”; [16])
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takes the √n improvement of precision directly into account, and 
has been shown to be useful when compared to Ranom which mea-
sures the precision of the anomalous signal.

High-resolution R-values go to infinity when the signal van-
ishes [19]. This is obvious from the fact that the mean intensity, in 
the denominator of the formula, approaches zero in this situation, 
whereas the numerator approaches a constant which is determined 
by the variance of the background. This prevents the aforemen-
tioned data R-values from being useful for comparisons with model 
R-values at vanishing signal, where the latter approach a constant 
value [21]. As a consequence, data R-values are not suitable for 
defining a high-resolution cutoff, a little-known fact that has led to 
wrong conclusions for numerous datasets.

One of the oldest and more useful estimators of precision is 
‹I/σ›mrgd (the subscript “mrgd“ is added here only to distinguish it 
from ‹I/σ›obs; the subscript is not in common use) of the averaged 
data, which most data processing programs print out. There exists 
a reciprocal relationship between ‹I/σ›mrgd and Rmrgd-I/Rsplit/Rp.i.m. 
similar to the relation between ‹I/σ›obs and Rmeas. Unfortunately, 
the value of ‹I/σ›mrgd depends on the error model, which usually 
varies significantly between different data processing programs 
[17]. Furthermore, for a given error model, ‹I/σ›mrgd rises monot-
onously with higher multiplicity, even if the additional data are 
bad, e.g., in case of radiation damage. Nevertheless, historically a 
value of ‹I/σ›mrgd > 2 has been and continues to be used by many 
crystallographers as indicating the highest resolution shell that 
should be used for refinement [3, 22].

The latest, statistically justifiable and so far most useful addi-
tion to the crystallographic data precision indicators is CC1/2, 
which is derived from mainstream statistics and measures the 
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correlation coefficient between merged intensities obtained from 
two random subsets of the data. Its properties have been investi-
gated recently [19, 23, 24]. It does not depend on estimated stan-
dard deviations of intensities, and its value is not misleadingly 
increased by important types of systematic errors [23]. Being a 
correlation coefficient, its value can be assessed for significance by 
a t-test, and most importantly, it offers the possibility to define a 
high- resolution cutoff based on the question “where do the data 
still have significant signal.”

Furthermore, from CC1/2 we can calculate CC*, a quantity on 
the same scale as correlation coefficients between measured inten-
sities and Fcalc

2 that are obtained from a model [19]. The latter, 
termed CCwork/CCfree, are defined for the “working” and the 
“free” set of reflections used in refinement, and should converge 
towards CC* in the course of model completion and correction.

Since the true intensity values are usually unknown and not mea-
surable, in a strict sense it is impossible to estimate the accuracy of 
the merged intensity values, because undetected systematic error 
may be present which has to be added to the error estimate corre-
sponding to the precision of the merged data.

As discussed, a few sources of systematic error remain poten-
tially undetected; most notable are absorption, diffuse scattering 
and detector nonlinearity. Experience suggests that the undetected 
systematic error in the merged data may be on the order of a few 
percent for a good experiment; this is the relative difference 
between observed data and calculated intensities seen in small- 
molecule experiments where a complete and accurate model of the 
structure is available. A more quantitative, but still conserva-
tive upper limit is the reciprocal of ISa: this estimate asserts that the 
undetected systematic error is unlikely to be higher than the 
detected systematic error.

It is important to realize that when adding independent errors 
or error estimates, error propagation tells us that we have to add 
their squares, and finally take the square root. To give an example: 
suppose we expect an undetected relative systematic error of 3 % 
(conservative upper limit at ISa = 33), and a detected relative sys-
tematic error of 1.5 % (corresponding to ISa = 33 and fourfold 
multiplicity). In a low-resolution shell of a crystal, the random 
error in the merged data may amount to 2 %. We then have a rela-
tive accuracy estimate of about 4 % (√(0.032 + 0.0152 + 0.022) = 0.
039). In a resolution shell with 20 % relative random error in the 
merged data, we have a relative accuracy estimate of slightly more 
than 20 % (√(0.032 + 0.0152 + 0.202) = 0.203). Thus, in practice, 
the estimate of the undetected error dominates the accuracy esti-
mate of the strong low-resolution data, whereas for weak high- 
resolution data, the accuracy estimate is determined mostly by the 
precision of the merged data.

2.6 Accuracy 
of the Merged Data
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All reflections in a dataset contribute to any place in the Fourier 
synthesis of the electron density. In principle, this means that the 
quality of the electron density map is compromised if not all reflec-
tions are measured. Quantitatively, since the reflections contribute 
to the map in proportion to their amplitude, it is clear that the 
strongest reflections are most important. Strong reflections are 
found mainly at low resolution, where completeness fortunately is 
favoured by the geometry of the diffraction experiment, i.e., the 
low-resolution shells are usually more complete than the high- 
resolution shells. Then again, the strongest reflections are those 
that are most easily lost due to detector overload, which means 
that another dataset (“low resolution pass”) may be needed to fill 
in the missing (that is, saturated and thus inaccurate) reflections.

There exist no hard rules or studies about how incomplete 
data may be to be still useful. If non-crystallographic symmetry is 
present, averaging of the electron density maps of the copies of the 
molecule may be performed, which partly substitutes for missing 
completeness by virtue of redundancy in the unique dataset. If only 
a single copy of the molecule resides in the asymmetric unit, a low-
resolution completeness of less than 75 % can be expected to lead 
to quite noticeable degradation (artifacts) of maps (for an example, 
see http://ucxray.berkeley.edu/~jamesh/movies/ completeness.
mpeg); also, data missing systematically in a region of reciprocal 
space leads to more noticeable defects in the electron density than 
randomly missing data (http://www.ysbl.york.ac.uk/~cowtan/
fourier/duck4.html). On the other hand, if the low resolution 
is almost complete, there is no reason to discard high- resolution 
shells just for lack of completeness. To the contrary: all measured 
reflections are valuable as they mitigate Fourier ripples, contribute 
to the fine details in the electron density map, and constitute use-
ful restraints in refinement. The common practice of discarding 
high-resolution data if their completeness is not “high enough” is 
questionable, and has never been carefully tested.

3 How to Obtain the Best Data from XDS

The procedures for processing data with XDS have been described 
[4, 5] and are not repeated here. Instead, based on first hand expe-
riences when processing datasets from my own group and helping 
others with their challenging datasets, I focus on those steps that 
are critical for data quality. For simplicity, we assume that a given 
dataset can be indexed in the correct space group.

The overarching rules for data processing, in the order of their 
importance, are that

 (a) Sources of systematic error should be excluded if possible.
 (b) The impact of any remaining sources of systematic error on 

the data should be minimized.

2.7 Completeness
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 (c) The random error should be minimized.
 (d) The completeness of the data should be maximized.

Experience shows that goals (a), (b), and (c) are not conflict-
ing, but can be met with the same set of processing parameters. 
Topic (d), however, requires a compromise. For instance, rejecting 
the final frames of a dataset, in order to minimize the impact of 
radiation damage, will reduce the completeness, or at least the 
multiplicity of the data. Likewise, too generous masking of shad-
owed detector regions might lead to rejection of well-measured 
reflections.

Analysis of the information provided by XDS (see below) may 
lead to deeper insight about the data collection experiment itself. 
Designing and evaluating an experiment is a genuinely scientific 
approach and can and should not be left to automatic procedures.

The goal of data processing is to best parameterize the data 
collection experiment. If the data processing is repeated with 
changed parameters, the magnitude of the systematic error should 
be monitored, using ISa. By optimizing (maximizing) ISa, indica-
tors of data precision are usually enhanced along the way, mainly 
because the location and shape of the reflections on the frames 
can be predicted more accurately. Generally, if the systematic 
error in the data is reduced, the noise associated with it is con-
verted to signal. In case of doubt about any specific aspect of data 
processing, the parameter value that maximizes ISa is usually the 
correct one.

To discover problems associated with data processing, it is essential 
that in particular the files FRAME.cbf, INTEGRATE.LP, XDS_
ASCII.HKL and CORRECT.LP are analyzed.

FRAME.cbf should be inspected (Fig. 1) to find out whether 
spot shapes are regular, or whether there is indication of splitting 
and multiple lattices. Irregular and split spots indicate problems in 
crystal growth or handling, and always compromise data quality 
due to higher random noise (because spots extend over more pix-
els) and higher systematic error (because the reflection profiles dif-
fer from the average). Furthermore, FRAME.cbf allows finding 
out if predicted and observed diffraction patterns match. If they do 
not, the space group or geometric parameters may be wrong which 
may either prevent data processing from giving useful data, or may 
lead to downstream problems in phasing and refinement. However, 
this is beyond the scope of this article. Finally, FRAME.cbf, which 
visualizes the last frame processed by INTEGRATE, should be 
checked for the presence of ice rings (see below).

The tables in INTEGRATE.LP should be inspected for jumps 
or large changes in frame-wise parameters like scale factors, mosa-
icity, beam divergence, or refined parameters like unit cell param-
eters, direct beam position, and distance (Fig. 2). Such changes 

3.1 General 
Approach
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Fig. 1 Visualization of FRAME.cbf with xds-viewer. Predicted reflections are encir-
cled. Two areas that are shaded by the cryo nozzle are visible (left, and upper left) 
that the user has not masked, which compromises data quality. The raw data used 
to prepare the figures are from a sulfur-SAD experiment with cubic insulin [25]; 
they may be obtained from http://www.helmholtz-berlin.de/forschung/funkma/
soft-matter/forschung/bessy-mx/tutorial/experiment-1_en.html

Fig. 2 Plots of some tabular quantities given in INTEGRATE.LP. Plot (a) shows scale factors, based on back-
ground pixels, of each frame. The plot is smooth which attests to the stability of the beam. Plot (b) shows dif-
ferent mosaicity estimates: for each frame (blue); for every 5° batch of data (green); for whole dataset (red). 
Due to the high symmetry, the curves are smooth. Plot (c) shows refined cell parameters, and (d) shows refined 
crystal setting angles. The variations in cell parameters do not follow a trend, which suggests that CELL should 
not be refined in INTEGRATE. The variations in setting angles are small; whether refinement of ORIENTATION in 
INTEGRATE improves the data should be tested, and the decision should be made based on Isa
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should be understood as indicating a potential source of systematic 
error. Scale factor jumps should be brought to the attention of the 
beamline manager; the other changes point to problems concern-
ing the experiment parameterization, like crystal decay or slippage, 
and should trigger reprocessing after change of parameters like 
DATA_RANGE, DELPHI, and REFINE(INTEGRATE) until no 
further improvement can be obtained.

CORRECT.LP, among other statistics, reports on systematic 
error (ISa) and the precision of unmerged and merged intensities 
(Rmeas and CC1/2, respectively). It needs to be consulted to moni-
tor the success of changes to parameters in XDS.INP, and of 
changes to the file XPARM.XDS describing the geometry of the 
experiment, which is used by INTEGRATE. It is useful to plot the 
quantities reported in CORRECT.LP as a function of resolution, 
and as a function of the upper frame range (Fig. 3).

XDSSTAT, a program that analyzes XDS_ASCII.HKL, should 
be run and its output diverted to XDSSTAT.LP, to be visualized 
with a plotting program. In addition, the control images written 
by XDSSTAT offer a graphical way to inspect the projection of 
several quantities on the detector surface, most notably R-values, 
scale factors, and misfits (outliers identified during scaling) (Fig. 4).

Better processing may lead to a lower number of reflections 
rejected during scaling. A guideline for the acceptable number of 
outliers is the following: provided that the average multiplicity is 2 
or higher, up to 1 % of the observations (the default that XDS 
employs) may be rejected as outliers. If the percentage is higher, 
the reason for this should be investigated, first by inspecting “mis-
fits.pck” as obtained from XDSSTAT. If “misfits.pck” shows con-
centric rings of outliers, the high percentage appears justified, but 
the options for treating ice rings (see above) should be evaluated. 
Second, if specific frames have many outliers, as shown by 
XDSSTAT.LP, then these frames should possibly be omitted from 
processing, and the reason why they delivered outlier data should 
be investigated.

Several parameters have to be manually set before the inte-
gration step of XDS to mask shaded detector areas. Since 
the keywords TRUSTED_REGION, UNTRUSTED_
RECTANGLE, UNTRUSTED_ELLIPSE, and UNTRUSTED_
QUADRILATERAL are not evaluated by the INTEGRATE and 
CORRECT steps, they have to be specified earlier, namely, for the 
INIT or DEFPIX steps. This requires graphical inspection of at 
least a single data frame.

The low resolution limit of the data should be set such that the 
shadow of the beam stop is completely excluded, using INCLUDE_
RESOLUTION_RANGE. Contrary to the keywords mentioned 
before, this keyword can be specified at a later step (CORRECT). 
If the lower resolution limit is too optimistic (i.e., too low), many 

3.2 Shaded Areas 
of the Detector
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Fig. 3 Plots of some tabular quantities given in CORRECT.LP. Plot (a) shows ‹I/σ›obs (blue) and ISa (red), (b) the 
number of rejected observations. Both quantities are given as a function of resolution. Rejections peak at high 
resolution, due to the user’s neglect of masking the shaded regions of the detector. The remaining plots show 
different quantities as a function of the number of frames, and thus of the multiplicity; the coloured curves (blue 
to red) correspond to different resolution ranges (low to high resolution): (c) completeness, (d) ‹I/σ›mrgd, (e) CC1/2, 
and (f) CCanom, the correlation coefficient between the anomalous signals obtained from half-datasets [26].
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Fig. 4 Plots of some quantities obtained from XDSSTAT. Plot (a) shows a measure of radiation damage, Rd [27], 
revealing an increase in Rmeas from 5.0 to 5.8 %. This corresponds to a 3 % contribution by radiation damage 
for the final frames of the dataset (0.032 + 0.052 ~ 0.0582). Plot (b) shows the outliers projected on the detector; 
consistent with the high number of outliers revealed in Fig. 3b. Plot (c) displays Rmeas projected on the detector, 
which reveals high values (dark areas) in the shaded areas
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rejections and high χ2 values result in the low-resolution shell of 
the first statistics table available from CORRECT. If this is indeed 
observed, the lower resolution limit should be raised.

Single ice reflections, which fall onto a predicted spot position, are 
usually automatically excluded by the default outlier rejection 
mechanisms in CORRECT, either because their symmetry does 
not obey that of the macromolecular crystal, or because they are 
much stronger (“aliens” in CORRECT.LP) than the other reflec-
tions in their resolution range. The positions of rejected reflections 
can be visualized by inspecting the file “misfits.pck” using XDS- 
Viewer or adxv.

Strong ice rings should be manually excluded using 
EXCLUDE_RESOLUTION_RANGE; weak ice rings should 
be left to the automatic mechanisms for outlier rejection, 
because that results in higher completeness. To decide whether 
an ice ring should be considered strong or weak, the user should 
inspect the first statistics table in CORRECT.LP (“STANDARD 
ERROR OF REFLECTION INTENSITIES AS FUNCTION 
OF RESOLUTION”); ice rings are easily identified by a large 
number of rejections at resolution values near those of ice reflec-
tions (3.897, 3.669, 3.441, 2.671, 2.249, 2.072, 1.948, 1.918, 
1.883, 1.721 Å for hexagonal ice, the form most often encoun-
tered). If the χ2 and R-values in these resolution ranges are much 
higher than in the other ranges, the user should consider to reject 
the ice rings, using EXCLUDE_RESOLUTION_RANGE. This 
should also be done if the control image “scales.pck” (written by 
XDSSTAT) shows a significant deviation of scale factors from the 
value of 100 % at resolution values close to those of ice rings, or if 
“rf.pck” shows high R-values.

At very high resolution, in shells with mean intensity approach-
ing zero, the “alien” identification algorithm sometimes rejects 
very many reflections when using its default value of REJECT_
ALIEN = 20. If this happens, the default should be raised to, say, 
100 to prevent this from happening.

Since the defaults in XDS.INP are carefully chosen and XDS has 
robust routines, very good data are usually obtained from a single 
processing run, in particular from good crystals. However, in case 
of difficult or very important datasets, the user may want to try and 
optimize the data processing parameters. This can be understood 
as minimizing or eliminating the impact of systematic errors intro-
duced by the data processing step.

Three simple options should be tried:

 (a) The globally optimized geometric parameter file GXPARM.
XDS (obtained from CORRECT) may be used for another 
run of INTEGRATE and CORRECT. This operation may 

3.3 Ice Rings,  
Ice Reflections, 
and “Aliens”

3.4 Specific 
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reduce the systematic error which arises due to inaccurate 
 geometric parameters. It requires that the values of 
“STANDARD DEVIATION OF SPOT POSITION” and 
“STANDARD DEVIATION OF SPINDLE POSITION” in 
CORRECT.LP are about as high as the corresponding values 
printed out multiple times in INTEGRATE.LP, for each batch 
of frames. This option is particularly successful if the SPOT_
RANGE for COLSPOT was chosen significantly smaller than 
the DATA_RANGE, because in that case the accuracy of geo-
metric parameters from IDXREF may not be optimal.

 (b) In XDS.INP, the averages of the refined profile-fitting param-
eters as printed out in INTEGRATE.LP, may be specified for 
another run of INTEGRATE and CORRECT. Essentially, this 
option attempts to minimize the error associated with poorly 
determined spot profiles. This is most effective if there are few 
strong reflections and/or large frame-to-frame variations 
between estimates of SIGMAR (mosaicity) and SIGMAB 
(beam divergence) as listed in INTEGRATE.LP.

 (c) In XDS.INP, one may specify the keyword REFINE 
(INTEGRATE) with fewer (e.g., only ORIENTATION) or 
no geometric parameters, instead of the default parameters 
DISTANCE BEAM ORIENTATION CELL. This approach, 
which also requires at least one more run of INTEGRATE and 
CORRECT, is most efficient if the refined parameters, as 
observed in previous INTEGRATE runs, vary randomly 
around a mean value. Of course, preventing refinement of a 
parameter is not the correct approach if its change is required 
to achieve a better fit between observed and predicted reflec-
tion pattern. If removal of certain geometric parameters from 
geometry refinement in INTEGRATE indeed improves ISa, 
this indicates that the geometry refinement is not well enough 
determined to improve them beyond those obtained by the 
global refinement in IDXREF or CORRECT. This option 
thus reduces the systematic error due to poorly determined 
geometry. An alternative to switching refinement off is to 
specify a larger DELPHI than the default (5°).

Ideally, each of the three options (a–c) should be tried sepa-
rately. Those options that improve ISa can then be tried in 
 combination, and the optimization procedure may be iterated as 
long as there is significant improvement (of, say, a few percent) 
in ISa.

In my experience, optimization may lead to significantly better 
data, as shown by improved high-resolution CC1/2 and improved 
merging with other datasets, particularly for poor datasets with 
high mosaicity and/or strong anisotropy.
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Two possible ways of misusing XDS parameters should be 
mentioned.

First, it may be tempting to increase the number of outliers 
and thereby to “improve” (or rather “beautify”) the numerical val-
ues of quality indicators. This could in principle be achieved by 
lowering the WFAC1 parameter below its default of 1. However, 
the goal of data processing is to produce an accurate set of intensi-
ties for downstream calculations, not a set of statistical indicators 
that have been artificially “massaged.” Experience shows that 
reducing WFAC1 below its default almost always results in data 
with worse accuracy; conversely, raising WFAC1 may sometimes 
be a way to prevent too many observations to be rejected as outli-
ers. Only if there is additional evidence for the validity of reducing 
WFAC1 should this quantity be lowered.

The second way to misuse XDS is to consider all the reflections 
listed as “aliens” in CORRECT.LP as outliers, and to place them 
into the file REMOVE.HKL to reject them in another CORRECT 
run. This is not appropriate; it should only be done if there is addi-
tional evidence that these reflections are indeed outliers. Such evi-
dence could be the fact that the “aliens” occur at resolution values 
corresponding to ice reflections (see above).

The correct choice of high-resolution cutoff need not be made just 
once, but can be made at various times during a crystallographic 
study. The first is during data processing, and the additional times 
are when the data are used for calculations such as molecular 
replacement or model refinement, or calculating anomalous differ-
ence maps.

At the data processing stage, CC1/2 should be used as the sole 
indicator to determine a generous cutoff—one that avoids reject-
ing potentially useful data. It appears prudent not to discard reso-
lution shells with CC1/2 larger than, say, 10 %, and it would appear 
useful to deposit all of these data into the PDB, to enable later re- 
refinement with refinement programs that can extract more infor-
mation from weak data.

For further crystallographic calculations, one must decide 
upon the best cutoff to use for each application. Sometimes, as for 
molecular replacement, all one desires is a successful solution and a 
variety of choices may all work well. During the final model refine-
ment stage, when the goal is to get the most accurate model pos-
sible, a recent suggestion is that one need not make this decision 
blindly, but that several high-resolution cutoffs can be compared 
using the “pairwise refinement technique” [19, 23], to find the 
high-resolution cutoff that delivers the best model under the given 
circumstances: data, starting model, refinement strategy, and 
refinement program.

3.5 Don’ts

3.6 High- 
Resolution Cutoff
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4 The Relation of Data and Model Errors

An atomic model of a macromolecule has to fulfil certain  geometric 
restraints (bond lengths, angles, dihedrals, planes, van der Waals 
distances) because all macromolecules obey the same physico-
chemical principles and consist of the same building blocks whose 
stereochemistry and physical properties are well known from high- 
resolution structures. Given a suitable starting model, these 
restraints leave several degrees of freedom that can be used, by a 
refinement program, to fit the experimental data.

Only recently has it been possible to connect data quality to 
model quality [19], which requires definition of suitable indica-
tors, most notably CC*, CCwork, and CCfree (see Subheading 2.5). 
The advantage of using correlation coefficients on intensities to 
measure both, the agreement of the observed intensities with the 
(unmeasurable!) true (ideal) intensities using CC*, and the agree-
ment of the observed intensities with the model intensities using 
CCwork and CCfree, lies in the fact that these correlation coefficients 
are comparable since they are defined in a consistent way—other 
than is the situation with Rwork/Rfree and (e.g.,) Rmeas or Rp.i.m..

Importantly, refinement should not result in CCwork being 
numerically higher than CC* since that would mean that the model 
intensities agree better with the measured intensities than the ideal 
(true) intensities do. Since the measured intensities differ from the 
true intensities by noise, that would mean that the model fits the 
noise in the data, a situation that is called “overfitting.”

Since refinement makes CCwork approach CC*, CC* is a mean-
ingful upper limit for CCwork. Any improvement in the data (from 
better processing or a new experiment) that results in higher CC* 
allows obtaining a better model, with a higher CCwork (and of 
course better Rwork/Rfree).

In the following, we introduce a simple graphical representa-
tion for the relation between experimental data, true data, and the 
data corresponding to several models. If n is the number of reflec-
tions in a dataset, an n-dimensional space can represent all possible 
combinations of intensities. The set of true intensities T is repre-
sented by a point in this space, and so is the set of starting model 
intensities M and the set of measured unique intensities D. The 
three points T, M, and D can be conveniently represented as points 
in a two-dimensional subspace (plane) of this n-dimensional space, 
and other datasets may be represented as projections on this plane. 
It is this two-dimensional plane which is shown in Fig. 5.

A possible distance measure in this space may be established by 
considering 1-CC (“Pearson distance”), where CC is the correlation 
coefficient between intensities of a pair of datasets. Any relevant 
value of CC yields a Pearson distance less than 1; values of CC lower 
than 0, giving a Pearson distance greater than 1, are not meaningful 
because they correspond to unrelated data and models.
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In principle, there are infinitely many atomic models which 
fulfil the geometric restraints and could be used to calculate inten-
sities. This means that the density of points in the plane that cor-
respond to potential model structure factors is high everywhere. 
However, there is no smooth transition path, like that produced by 
refinement, between all these points. Nevertheless, they create 
local minima of the target function in refinement because these 
models fulfil the physicochemical restraints. In contrast, the subset 
of these local minima that are actually biologically meaningful is 
low overall, but high near T.

Since (by definition) CC* is the correlation of the data with 
the true intensities, we realize that all points on the circle with 
radius 1-CC* around D denote potential positions of the true 
intensities T. For the purposes of this discussion, one particular 
position of T at the lower edge of the circle has been marked. For 
the starting model M, a reasonable assumption is that the differ-
ences between M and D are not correlated with the error in D—
after all, a model obtained by Molecular Replacement is oriented 
and translated based on the signal, not the error in D. Likewise, a 
map calculated from experimental phases is based on the signal in 
D; the error in D just produces noise in the map. As represented in 
the Figure, this means that the vector from D to M is approxi-
mately at right angle to the vector between D and T.

If no or weak restraints were applied, refinement of the start-
ing model M would produce the sequence of models N′, O′, and 
P′—in other words, the intensities of the model would almost 
linearly approach those that were measured. However, applying 
the proper restraints adds information to the refinement which 
biases the model towards the truth; thus instead of N′, O′, and P′ 
the model intensities are represented successively by (say) the local 
minima N, O, and P. The model, depending on the radius of con-
vergence of the refinement protocol, needs to be manually 
adjusted to escape from these minima, and to progress towards 
T. Importantly, this only works if the starting model M is “close 
enough” to T; if it is not, manual adjustment becomes impossible 

MN'O'D

T

N
O

P

P'

Fig. 5 Sketch of the relation between the intensities of the experimental data (D), 
the true (unmeasurable) data T, and those corresponding to various models. 
Arrows indicate the progression from a first starting model (M) to a final model 
P′ (without restraints) or P (with restraints). Local minima of the refinement tar-
get give rise to the intermediate models N′, O′ and N, O, respectively
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as the electron density maps are too poor, and at the same time 
there is too little biological meaning in the model to guide its 
manual improvement.

As soon as the circle around D is reached (near P) after manual 
corrections and restrained refinement, the desired change of model 
intensities further towards T is almost orthogonal to the direction 
towards D; thus, the model may easily become stuck in one of the 
many local minima on the arc, which fulfil the geometric restraints, 
are biologically meaningful, and represent similarly good CCwork 
values. This means that it becomes increasingly difficult to improve 
the model any further. After a few iterations without clear progress, 
crystallographers—subject to individual levels of experience and 
ambition—tend to abandon manual model correction and refine-
ment. This explains why different crystallographers obtain differ-
ent models from the same data. In any case, T is never reached, i.e., 
a residual error remains, but its amount depends on details of the 
refinement protocol and program, as well as on the amount of time 
and dedication that is invested into improvement of the model.

The following points are also noteworthy. First, if overfitting 
is avoided, the refined model P is outside or on the circle around 
D, because 1-CCwork ≥ 1-CC* due to CCwork ≤ CC*. If CCwork = CC*, 
P lies on the arc between P′ and T. One could argue that some 
overfitting could be tolerated as long as it reduces the distance 
between the refined model and T. Unfortunately, the latter dis-
tance cannot be measured, which is why it appears prudent to 
accept only little overfitting.

Second, the length of the arc between P′ and T is proportional 
to 1-CC* which means that there are more local minima available 
for the refined model if the error in the data is higher. In reality, the 
space depicted as a one-dimensional arc in Figure N is a multidi-
mensional one, and the number of local minima grows not only 
proportionally with 1-CC*, but rather with a large exponent. 
Thus, a large family of similar models with indistinguishable qual-
ity may be obtained, simply by varying some refinement parame-
ters, or displacing the coordinates a few tenths of an Angström 
during manual adjustment.

Third, larger random and systematic errors will lead to a larger 
radius of the circle. The average distance between T and those 
points on the circle that correspond to refined models depends 
linearly on the radius, which emphasizes that better data produce 
better models. Undetected systematic errors may lead to T being 
outside the circle, which means that refinement will not be able to 
push the model as close to T as when T is on the circle, demon-
strating that it is important to detect and minimize systematic 
errors.

Fourth, the refined model P can be closer to T than to D which 
means that—somewhat counter intuitively at first!—the final model 
is actually better than the data. This is trivially true if the starting 
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model M happens to be close to T, but actually it is even the 
expected result, because judicious refinement and manual adjust-
ment of a model takes sources of information beyond the mere 
experimental data restraints into account.

These considerations may illuminate the relation between data 
and model, and demonstrate that understanding and eliminating 
the sources of errors in the data helps in improving the atomic 
models on which our biological insight relies.
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