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We present an unsupervised data processing workflow that is specifically designed to obtain a fast conformational clus-
tering of long molecular dynamics simulation trajectories. In this approach we combine two dimensionality reduction
algorithms (cc_analysis and encodermap) with a density-based spatial clustering algorithm (HDBSCAN). The proposed
scheme benefits from the strengths of the three algorithms while avoiding most of the drawbacks of the individual meth-
ods. Here the cc_analysis algorithm is for the first time applied to molecular simulation data. Encodermap complements
cc_analysis by providing an efficient way to process and assign large amounts of data to clusters. The main goal of the
procedure is to maximize the number of assigned frames of a given trajectory, while keeping a clear conformational
identity of the clusters that are found. In practice we achieve this by using an iterative clustering approach and a tunable
root-mean-square-deviation-based criterion in the final cluster assignment. This allows to find clusters of different den-
sities as well as different degrees of structural identity. With the help of four protein systems we illustrate the capability
and performance of this clustering workflow: wild-type and thermostable mutant of the Trp-cage protein (TC5b and
TC10b), NTL9 and Protein B. Each of these test systems poses individual challenges to the scheme, which in total give
a nice overview of the advantages, as well as potential difficulties that can arise when using the proposed method.

I. INTRODUCTION

With the ever-growing power of computers over the last
decades, researchers in the field of molecular dynamics
(MD) have gotten access to increasingly long trajectories and
thereby to increasingly large amounts of data. The introduc-
tion of supercomputers which are specifically designed to gen-
erate MD trajectories (Anton1 and Anton 22) is only the latest
high point in this development. Furthermore, new sampling
methods3,4 as well as distributed computing projects, such as
Folding@home5, have contributed to a massive increase in
generated simulation trajectories. With this increasing amount
of data it is essential to have powerful analysis tools to process
and understand underlying systems and processes.

There is a rapid increase in application of unsupervised ma-
chine learning methods to analyze molecular simulation data.
Two of the most used families of analysis techniques are clus-
tering and dimensionality reduction (DR) algorithms. They
help to find low-dimensional subspaces in which important
aspects of the original data are preserved and to group the
data based on a given similarity measure/metric and thereby
gain a better overview and understanding. In practice, most
of the times clustering and DR methods are used in com-
bination. The DR algorithms can be roughly divided into:
linear methods (the most known are principal component
analysis (PCA)6,7 and time-lagged independent component
analysis (TICA)8,9), nonlinear methods (kernel and nonlinear
PCA, multidimensional scaling (MDS)10,11 and MDS-based
methods like sketch-map12, isomap13, diffusion maps14,15 or
UMAP16, etc.) and autoencoder-based approaches like (enco-
dermap17,18, time-autoencoder19, variational autoencoders20

and Gaussian mixture variational autoencoders21). In terms
of clustering algorithms, there are again a wide range of

different methods: K-Means22,23, spectral-clustering24, DB-
SCAN25, density-peak clustering26, CNN-clustering27, root-
mean-square deviation (RMSD) based clustering28, neural-
networks-based VAMPnets29, etc. For a comprehensive
overview of unsupervised ML methods commonly used to
analyse MD simulation data we refer to Ref. 30.

Even from this incomplete list of available methods it
should become obvious that there are a lot of different clus-
tering, as well as DR methods. All these methods have their
individual strengths and weaknesses. But there are still open
challenges in the successful usage of the listed methods for
processing simulation data with high spatial and temporal
resolution. This is connected either to the proper choice of
hyper-parameters (such as the number of dimensions for DR
methods, the number of expected states for some clustering
algorithms, neural-networks architectures, different cut-offs,
correlation times, etc.), expensive optimisation steps or the
amount of data which could be processed simultaneously. In
this work we present a data processing scheme which com-
bines three different algorithms in one workflow to create a
powerful clustering machinery. It tackles a number of the
mentioned challenges as it has a way to define an appropri-
ate lower dimensionality of the data, does not require a pri-
ory information about the expected number of states and it is
fast in processing extensive MD trajectories with both a very
high dimensionality and a large number of observations. It is
specifically designed to find conformational clusters in long
molecular simulation data (Fig. 1).

We use two different DR algorithms, namely an algorithm
called “cc_analysis” and the encodermap algorithm. The
cc_analysis method belongs to the family of the MDS-based
techniques and was first introduced for the analysis of crys-
tallographic data31,32. Here it is used for the first time for
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FIG. 1. Data processing routine presented in this article.

projecting data of protein conformations. The dimensionality
of the cc_analysis-space which is typically required is more
than two (10 to 40 for the systems shown in this work) and
the amount of data, which can be efficiently projected simul-
taneously is limited by the available memory (about 50000
frames for a 72 GB workstation). To process much longer tra-
jectories and to obtain a two-dimensional representation we
use the second DR algorithm – encodermap33. Its loss func-
tion however consist of two parts: the autoencoder loss and a
MDS-like distance loss, which introduces an interpretability
to the resulting 2D representation. Moreover, once the enco-
dermap network is trained, the encoder function can be used
to project data to the 2D map in an extremely efficient way.
We use encodermap to project data into 2D and for a fast as-
signment of the additional members to the clusters defined in
the cc_analysis space. Finally we use the HDBSCAN algo-
rithm34 to cluster the data in the cc_analysis space and then
visualize the resulting clusters in the 2D encodermap space.
HDBSCAN is a combination of density and hierarchical clus-
tering, that can work efficiently with clusters of varying den-
sity, ignores sparse regions, and requires a minimum number
of hyper parameters. We apply it in a non-classical iterative
way with varying RMSD-cutoffs to extract the protein confor-
mations of different similarities.

The clustering workflow which we describe in this work
combines the three before mentioned algorithms to leverage
their different strengths, while avoiding the drawbacks of the
individual methods. It thereby serves as a new route to extract
a conformational clustering from large MD data. The clusters
that are identified using this workflow are structurally highly
consistent and can be used in various down-stream analyses,
e.g. kinetic model building, or for the initiation or evaluation
of enhanced sampling techniques or to simply get an overview
of the conformational variety in any given data set. Subse-
quently we will show how the scheme performs on long MD
trajectories of wild-type and mutated Trp-cage with native and
misfolded meta-stable states (208 µs and 3.2 µs long simula-
tions); really extensive simulations of NTL9 (1877 µs); and
Protein B, where only a small percent of the simulation data
(5%) is in the folded state (104 µs).

II. METHODS

A. cc_analysis

For dimensionality reduction, we use an cc_analysis intro-
duced in Ref. 31,32. This algorithm was originally devel-
oped to analyse crystallographic data, where presence of noise
and missing observations pose a challenge to data process-
ing in certain experimental situations. The method separates
the inter-data-set influences of random error from those aris-
ing from systematic differences, and reveals the relations be-
tween high-dimensional input features by representing them
as vectors in a low-dimensional space. Due to this property
we expected it to be highly applicable to protein simulation
data, where one seeks to ignore the differences arising from
random fluctuations, and to separate the conformations based
on systematic differences. In the course of the manuscript we
show that this assumption proved to be correct.

The cc_analysis algorithm belongs to the family of MDS
methods10. Its main distinction is that it minimizes the sum of
squared differences between Pearson correlation coefficients
of pairs of high-dimensional descriptors and the scalar prod-
uct of the low-dimensional vectors representing them (see
Eq. (1)). The procedure places the vectors into a unit sphere
within a low-dimensional space. Systematic differences be-
tween the high-dimensional features lead to differences in
the angular directions of the vectors representing them, and
purely random differences of data points lead to different vec-
tor lengths at the same angular direction. The algorithm min-
imizes, e.g. iteratively using L-BFGS35, the expression

Φ(x) =
N−1

∑
i=1

N

∑
j=i+1

(ri j − xi · x j)
2 (1)

as a function of x, the column vector of the N low-dimensional
vectors {xk}. Here ri j is the correlation coefficient between
descriptors i and j in the high-dimensional space and xi · x j

denotes the dot product of the unit vectors xi and x j represent-
ing the data in the low-dimensional space; N is the number
of observations, e.g. protein conformations. The output of
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cc_analysis is the N low-dimensional vectors {xk}, and the
eigenvalues of the xx

T matrix.
To understand why this is a sensible approach, one can

think about obtaining the least squares solution of Eq. (1)
algebraically by eigenanalysis of the matrix r = {rij}. In that
case one would have to solve

xx
T = r

where r is the matrix of the correlation coefficients ri j. The
n strongest eigenvalue/eigenvector pairs (eigenvectors cor-
responding to the largest eigenvalues) could then be used
to reconstruct the N vectors xi, which are located in a n-
dimensional unit sphere. The systematic differences between
the input data are thereby shown by the different angular di-
rections in this low-dimensional sphere. This approximation
is meaningful because in general the Pearson correlation co-
efficient can be written as a dot product between two vectors
(after subtraction of the mean and dividing by the standard de-
viation to scale the vectors to unit length) and is equal to the
cosine of the angle between them. Hence, in an ideal scenario,
∑N

i, j xi ·x j can exactly reproduce the high-dimensional correla-
tion coefficient matrix and Φ(x) in Eq. (1) would be equal to
zero.

The length of the vectors is less important than the angle
between them. The latter has an inherent meaning: two high-
dimensional feature vectors with a correlation coefficient of
zero between them would be projected to unit vectors at 90◦

angles with respect to the origin, and two feature vectors with
a correlation coefficient of one would have a corresponding
angle of zero degrees.

Despite the generality of the cc_analysis approach, by now
it was only applied to crystallographic data36,37) and protein
sequence grouping38. Here we present a first application of
cc_analysis for protein simulation data analysis.

B. Encodermap

To accelerate the processing of large datasets, e.g. from
extensive simulations, in addition to cc_analysis, we make
use of one more dimensionality reduction technique – enco-
dermap. It was developed by Lemke and Peter 33 and is used
here for fast assignment of data points to clusters as will be
explained in details in Sec. II D. The method combines the
advantages of a neural network autoencoder17 with a MDS
contribution, here the loss function from the sketch-map algo-
rithm12 (Fig. 2). This combination is exceptionally efficient
for projecting large simulation data to the two-dimensional
representations: the sketch-map loss function allows to con-
centrate only on relevant dissimilarities between conforma-
tions (ignoring thermal fluctuations and coping with the large
dissimilarity values caused by the data’s high dimensionality).
Furthermore the autoencoder approach allows to avoid com-
plex minimisation steps of the sketch-map projection and to
process huge amounts of data in a very short time.

The encodermap loss function Lencodermap (Eq. (2)) is a
weighted sum of the autoencoder loss Lauto (Eq. (3)) and the
sketch-map loss function Lsketch (Eq. (4)), which emphasizes

FIG. 2. Schematic description of encodermap. It has an archi-
tecture of the classic autoencoder consisting of two neural networks
(encoder and decoder) with the same number of layers and neurons
in each layer connected through the bottle-neck layer with two neu-
rons. In addition to autoencoder loss La(X , X̃) encodermap loss has
a term with the sketch-map loss function Ls(X ,x), which improves
the quality of two-dimensional projection obtained in the bottle-neck
layer (see Eq. (2)).

mid-range distances by transforming all distances via a sig-
moid function (Eq. (5)).

Lencodermap = kaLauto + ksLsketch +Reg, (2)

Lauto =
1
N

N

∑
i=1

D(Xi, X̃i), (3)

Lsketch =
1
N

N

∑
i6= j

[SIGh(D(Xi,X j))− SIGl(D(xi,x j))]
2
, (4)

where ka, ks are adjustable weights, Reg is a regularization
used to prevent overfitting; N is a number of data points to
be projected; D(·, ·) is a distance between points, X is a high-
dimensional input, x is a low-dimensional projection (the bot-
tleneck layer); SIGh and SIGl are sigmoid functions of the
form shown in Eq. (5).

SIGσ ,a,b(D) = 1− (1+(2
a
b − 1)(

D

σ
)a)−

b
a
, (5)

where a, b and σ are parameters defining which distances to
preserve.

C. Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN)

The HDBSCAN34,39 can be approached from two different
sides: it can be described as a hierarchical implementation of a
new formulation of the original DBSCAN25 algorithm called
DBSCAN* by J. G. B. Campello et al. 34 or it can be formu-
lated as a robust version of single-linkage clustering with a
sophisticated method to obtain a flat clustering result, as done
by McInnes, Healy, and Astels 39 . Here we describe it through
the second approach.
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FIG. 3. Application of HDBSCAN on a toy data set with three
clusters. i) Example for the computation of the MRD for two points
(red and blue). The red and blue circles indicate the farthest distance
to the 5 nearest neighbours for both points. One can see that the
distance between the red and blue points (green line) is larger than
both the radii of the blue and the red circle. Therefore in this case
the green line distance is chosen as MRD. ii) The minimum span-
ning tree based on the MRDs. iii) The cluster hierarchy. iv) The
condensed clustering.

In the first step the algorithm introduces the so-called mu-
tual reachability distance (MRD) (Eq. (6)), which transforms
the space to make sparse points even sparser but does not sig-
nificantly change the distance between already dense points.

Dmreach−k(xi,x j) =

max{corek(xi),corek(x j),D(xi,x j)},
(6)

where x are points being clustered, k is a constant which deter-
mines a number of nearest neighbouring points, corek(x) is a
function, which finds the maximum distance between a point
x and its k nearest neighbours; D(·, ·) is a distance between
two points. The maximum of three distances is selected as the
MRD (Fig. 3 i)).

In the next step the minimum spanning tree based on the
MRDs is build via Prim’s algorithm40 (see Fig. 3 ii)). This
is done by starting with the lowest MRD in the data set and
connecting the two points by a straight line. In the following
steps always the next nearest data point to the existing tree,
which is not yet connected, is added to the tree.

Once the minimum spanning tree is generated the cluster
hierarchy can be built. This is done by first, sorting the edges
of the tree by distance. Then the algorithm iterates over the
edges, always merging the clusters with the smallest MRD.
The result of this procedure can be seen in Fig. 3 iii).

In order to extract a flat clustering form this hierarchy, a
final step is needed. In this step the cluster hierarchy is con-
densed down, by defining a minimum cluster size and check-
ing at each splitting point if the new forming cluster has at
least the same amount of members as the minimum cluster
size. If that is the case, then a new cluster is accepted, if not
then the data points splitting off are considered noise. The
condensed tree of a toy system can be seen in Fig. 3 iv).

D. Introduction of a new clustering workflow

In this article we present a data processing routine which we
found to be extremely efficient for large molecular dynamics
simulation trajectories. It relies on the three algorithms intro-
duced above. A schematic description is given in Fig. 1. In
this workflow a given data set is clustered iteratively until ei-
ther a specified amount of data points are assigned to clusters
or a maximum number of iterations have been reached.

Fig. 1 illustrates the sequence of data processing steps
along the clustering workflow. In the first step a high-
dimensional collective variable (CV) is chosen. For all sys-
tems that are shown in this article all pairwise distances be-
tween the Cα atoms were selected. After a CV has been cho-
sen, for trajectories containing more than 25,000 frames, en-
codermap is trained on all data. Thereby we obtain a function
which can be used to project data very efficiently to the newly
generated 2D space. In parallel, a random subset from the
entire data set is generated. The reason to use such a subset
is a limitation that comes with the cc_analysis dimensional-
ity reduction. As mentioned in Sec. II A the cc_analysis al-
gorithm works with the correlation matrix. This means that
the Pearson correlation coefficients of the selected CV (here
the pairwise c-alpha distances) are calculated for all unique
pairs of frames, and used as input to cc_analysis. However
the larger a data set is, the larger the correlation coefficient
matrix will be, until it is no longer efficient to work with that
matrix due to very long computation times as well as memory
issues. Therefore a subset is created, by randomly selecting
up to 25,000 data points from the entire data set. This sub-
set is then used in the cc_analysis dimensionality reduction
to project the high dimensional CVs (between 190 and 1081
dimensions for the systems in this article) to a lower dimen-
sional subspace (20 to 30 dimensions for the systems in this
article). The choice of the appropriate amount of reduced di-
mensions is done by searching for a spectral gap among the
cc_analysis eigenvalues. Once the cc_analysis space has been
identified, a clustering is generated by applying the HDB-
SCAN algorithm to that lower dimensional data. Even though
we have found that the HDBSCAN algorithm works very well
in the cc_analysis space, it is of course possible to exchange
this algorithm with any other density based clustering method
(e.g. density peaks-based clustering26). This again highlights
the modularity of the presented workflow. A detailed descrip-
tion on how to choose the dimensionality for cc_analysis and
the parameters for HDBSCAN is given in the supporting in-
formation (SI), Sec. S-I.

We use two different DR algorithms in the workflow due to
the following reasons. For once, the cc_analysis algorithm is
used to project the smaller subsets to a still comparably high-
dimensional subspace, which holds more information com-
pared to the 2D projection of encodermap. This higher dimen-
sional subspace is therefore very well suited to be the cluster-
ing space. Once the data subset is clustered in the cc_analysis
space, the 2D encodermap space is used to assign the points
that were not a part of the subset to the found clusters. The
2D projection is very well suited to do a fast assignment of
additional points from the data set, as well as to serve for
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visualization purposes. Additionally, encodermap is able to
project huge data sets very time-efficiently. Hence, the gen-
erated 2D projection of a given data set can be used to avoid
the main disadvantage of the cc_analysis algorithm in the way
we use the algorithm here, which is having to use subsets of
the data due to memory issues. In order to circumvent this
disadvantage, we build a convex hull in the 2D space for each
cluster that was found in the cc_analysis space. If an unas-
signed point lies inside a convex hull, the RMSD to the cen-
tral conformation of that cluster is computed. This convex hull
criterion therefore works as an acceleration element in the al-
gorithm, since it ensures that the RMSD does not need to be
computed for every single data point in the remaining data
set. The acceleration obtained via this approach is discussed
in Sec. IV. In case the RMSD is inside a given cutoff, the
data point is considered to be part of that cluster, else it is not
assigned to the cluster. This RMSD cutoff is chosen by taking
the weighted mean of all average internal cluster RMSDs41 of
the first clustering iteration. We found that this procedure gen-
erates structurally quite well defined clusters with a low inter-
nal cluster RMSD since the RMSD criterion is based on well
defined conformational states that emerged from cc_analysis
combined with HDBSCAN. However there is also the possi-
bility to identify more fuzzy clusters that only share a general
structural motif by using a larger RMSD cutoff for the assign-
ment. An example of the identification of such fuzzy clusters
is described in Sec. III B.

By introducing a RMSD criterion in the last step, we force
the clustering to only include structurally very similar confor-
mations in the respective clusters. There are of course various
other clustering algorithms, which group MD data sets based
on their RMSD values, e.g. an implementation28 in the GRO-
MACS software package42. Such RMSD-based clustering al-
gorithms have been used in the MD community for at least 20
years now and they are a very obvious choice for conforma-
tional clusterings of MD trajectories. They directly compare
the positions of specified atoms in various conformations of a
molecule and then group the individual conformations along
the trajectory using a cutoff value. However these methods
generally rely on the full RMSD matrix of a given data set.
For larger trajectories it becomes almost infeasible to com-
pute these matrices due to extremely long computation times
as well as memory issues that arise when working with such
large matrices. In our workflow we can circumvent these is-
sues by only having to compute the RMSD between the co-
ordinates of Cα atoms of the central conformations of each
cluster and the data points that lie inside the convex hull of
the respective clusters in the 2D space.

In case a given system has less then about 50,000 frames,
it is in principle also possible to omit the encodermap part,
since the cc_analysis algorithm is able to handle the entire
data set. If this approach is chosen, the user can either entirely
skip the RMSD criterion, or the members of clusters that are
found in the cc_analysis space can still be accepted/rejected
based on a RMSD cutoff. An advantage of using both the
cc_analysis algorithm and the encodermap algorithm together
is the possibility to check the dimensionality reduction steps
on the fly. Since the clustering is done in one DR space, but

visualized in the other, narrow and well defined clusters in
the 2D space indicate that the 2D map separates the different
conformational clusters nicely and that therefore the chosen
encodermap parameters were well selected.

Our clustering scheme is not very dependent on the qual-
ity of encodermap projection, as it is used only to assign ad-
ditional structures to already identified clusters. Since the
clustering itself is done in the higher dimensional cc_analysis
space and the final cluster assignment uses a RMSD cutoff.
The only requirement that the scheme poses towards the 2D
map is that similar conformations are located close to each
other in the map. This is achieved by the MDS-like distance
loss part of the overall loss function of encodermap.

Remaining points which were not assigned to any cluster
after one clustering iteration are then used as a new pool of
data, from which the new random subset is build. This whole
cycle is repeated until a certain amount of data points are as-
signed to clusters or until a certain number of clustering iter-
ations are performed. To decide on a stopping point for the
iterative procedure we rely on two possible convergence crite-
ria: either a percentage of assigned conformations or average
cluster sizes found at an iteration. If we observe a plateau in
the percentage of unassigned data points during several suc-
cessive iterations the clustering procedure is stopped. Due to
the design of our workflow, the average cluster size of newly
added clusters will decrease with each iteration. Therefore,
the average size of newly added clusters or the convergence
of this property during successive iterations can also be used
as a stopping criterion. Examples are shown in SI, Sec. S-II,
Fig. S2.

The conformational clusters that are identified by this work-
flow can be used in various different ways. For example, to
build a kinetic model, which is discussed more in Sec. IV.
Another use-case would be to take advantage of the knowl-
edge gained from the clustering to initiate and/or evaluate
enhanced sampling schemes43,44 to sample lowly populated
parts of phase space in order to speed-up the overall conver-
gence. Or the found clusters might simply be used to get an
overview of the conformational variety that is present in any
given data set, which works especially well in combination
with the visualization of the accessible phase space in the 2D
encodermap projection.

III. RESULTS

A. Description of the proteins’ trajectories used for the
analysis

In order to illustrate the capability and performance of the
proposed scheme, we chose four test systems: 40 tempera-
ture replica exchange (RE) trajectories of the Trp-cage pro-
tein (TC5b) analysed in the original encodermap paper33; the
other three systems are long trajectories of Trp-cage (TC10b),
NTL9 and Protein B simulated by the Shaw group on the An-
ton supercomputer45 and generously provided by them. The
four systems are listed in Table I. For all the systems we chose
distances between Cα atoms as the input collective variables.
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Trp-cage RE (TC5b) Trp-cage Anton (TC10b)
NTL9

Protein B

Trajectory length in µs 3.2 208 1877 104
Number of frames 1,577,520 1,044,000 9,389,654 520,250

Input CVs dimensionality 190 190 703 1081
Number of cc_analysis dimensions 20 20 20 30

Average iteration time
on our local workstation
(see SI, Sec. S-V) [min]

15 18 55 12

Average iteration time
over all used

CPU threads [min]

24 x 15
= 360

24 x 18
= 432

24 x 55
= 1320

24 x 12
= 288

Frames assigned to clusters
after 10 iterations 60.5% 33.1% 80.9% 20%

Total CPU time
over all iterations [min] 3600 4320 13200 2880

TABLE I: Proteins analysed in this study and performance overview of the clustering scheme.

The first protein we analyse in this work is the Trp-cage sys-
tem (TC5b) (Trp-cage RE). It is a comparatively small protein
(20 residues) which has a very stable native state when sim-
ulated at room temperature. The combination of 40 temper-
ature replica exchange trajectories (temperature range from
300 to 570 K, 3.2 µs of simulation time, 1,577,520 frames)
give a very diverse mixture of structures including trajecto-
ries where the system is very stable and barely moves away
from the native state, as well as highly disordered trajectories
where high-energy conformations are visited. This combina-
tion of conformations makes the data set extremely diverse
and complicated for the analysis due to the high number of
expected clusters with extremely varying size and density.

Secondly we consider the K8A mutant of the thermostable
Trp-cage variant TC10b (Trp-cage Anton) simulated by
Lindorff-Larsen et al. 45 (208 µs; 1,044,000 frames). This
simulation was run at 290 K and produced a much more disor-
dered trajectory compared to the low temperature replica sim-
ulations of the TC5b system. Despite the fact that TC5b and
the K8A mutant of TC10b have slightly different amino acid
sequences, we use the same trained encodermap to project
both systems in the same 2D map (see Fig. 4 and Fig. 5),
since both systems have the same number of residues and
therefore the same dimensionality of CVs. This offers the
opportunity to demonstrate that different systems can be com-
pared to each other very nicely when projected to the same 2D
space.

Next we probed our clustering scheme with extremely long
(1877 µs46; 9,389,654 frames) simulations45 of the larger (39
amino acids) N-terminal fragment of ribosomal protein L9
(NTL9) which has an incredibly stable native state. Besides
the possibility to show how the algorithm deals with this ex-
tremely large data set, the system has also been studied by
several other researchers29,47. This allows us to compare our
results to their findings. Schwantes and Pande 47 reported

on very low populated states which involve register-shifts be-
tween the residues that are involved in the formation of the
beta sheet structures of NTL9. This opens the opportunity to
show whether our clustering workflow is able to identify both
very large states, as well as extremely lowly populated states
in the same data set.

Lastly we chose to analyse the protein B simulations (104
µs; 520,250 frames)45. Compared to the aforementioned pro-
teins protein B does not have a single very stable state, instead
three helices can move quite easily against each other. This
leads to a broad conformational space, where the energy bar-
riers between the individual states are very small. Therefore
the individual conformational states are not as easily separable
and rather fade/transition into each other. Taking into account
the long simulation time this system is very hard to cluster
conformationally.

To demonstrate how our clustering scheme works we chose
to apply it to these four systems that pose very diverse chal-
lenges (e.g. an extremely large data set, both highly and very
lowly populated states in the same data, differences in the
amount of folded/unfolded conformations along the trajecto-
ries). For each of the systems we initially conducted the same
amount of clustering iterations (10) and then evaluated the re-
sulting clustering and decided whether for a given system ad-
ditional iterations were needed.

B. Trp-cage

a. TC5b. For the RE simulations of the Trp-cage the
clustering scheme was run over 10 iterations and assigned
60.5% of all conformations to clusters. Fig. 4 shows an en-
codermap projection of all 40 replicas with some of the most
populated clusters found after 10 iterations and representative
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FIG. 4. Trp-Cage TC5b (40 temperature RE trajectories): Exemplary conformations of the most populated clusters found in each of the areas
indicated by coloured circles and their populations in percentages. The cluster representatives show the average secondary structure over the
entire cluster. The clusters are coloured randomly, the colours repeat. Therefore clusters that have the same colour but are separated in the 2D
space contain different conformations. The depicted clusters hold 36.5% of all conformations. Most of the remaining 24% of conformations
that have been assigned to clusters are slight variations of the native structure and are not shown here due to visibility reasons. The cluster that
is referred to by an arrow is one of the fuzzy clusters that were generated by increasing the RMSD cutoff. Top right: a histogram of the 2D
encodermap space.

conformations of these clusters. Similar conformations are
grouped together and rare structures are spread out across the
map. For example, the native conformation of Trp-cage RE
(33.4% of all conformations) is shown in the bottom right of
the 2D map in Fig. 4. On the bottom left conformations with
one turn near the middle of the backbone are located. The two
parts of the backbone chain of these conformations lie right
next to each other and partially form beta-sheet structures.

Using a larger cutoff distance in the RMSD-based assign-
ment of structures to the clusters (the other clusters were gen-
erated by applying a 1.8 Å RMSD cutoff to the central con-
formation) we obtained larger and quite diffuse clusters of ex-
tended conformations (one of these clusters is shown in the
left part of the projection in Fig. 4 where it is referred to
by an arrow). An appropriate size of this RMSD cutoff was
defined for each fuzzy cluster individually by computing the

mean value of the largest 20% of the RMSD values between
the centroid and cluster members of the cluster identified in
the current iteration (it is equal to 5.5 Å for the cluster shown
here). Before we identify fuzzy clusters, we first continuously
assign structures based on a fixed RMSD cutoff (1.8 Å for
TC5b) until one of the stopping points defined in Sec. II D is
reached (average cluster size for TC5b). Once this stopping
point is reached, the RMSD cutoff is adjusted in the way ex-
plained above and fuzzy clusters are obtained. Thereby one
ensures that all conformations that can be assigned to well-
defined clusters are removed from consideration before iden-
tifying fuzzy clusters. The usage of such a varying cutoff can
be very helpful in order to identify diffuse clusters, where the
members share a certain structural motif but do not converge
to a very defined conformation, just like the cluster shown
here.
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FIG. 5. The most populated clusters and respective conformations of Trp-Cage TC10b45 projected to the same 2D encodermap space as TC5b
(Fig. 4).bTop right: a histogram of the 2D projection.

From the clustering results shown in Fig. 4 one can see
that the proposed clustering workflow manages to efficiently
identify structurally very well defined clusters for the TC5b
system. Over 10 clustering iterations it assigned 60.5% of
all conformations to 260 clusters. Besides the highly popu-
lated native state (33.4%), the algorithm also finds very "rare"
states, which contain only a very small amount of conforma-
tions (≤0.1%) but show nevertheless a very defined structural
identity.

b. TC10b. Fig. 5 shows the same analysis applied to the
trajectory of the K8A mutant of TC10b Trp-cage. We used the
encodermap which we trained on TC5b to project the trajec-
tories to the same 2D space. The identification of clusters
however is of course entirely independent and unique for both
cases, since the clustering is done in the higher dimensional
cc_analysis space.

Notably, the backbone conformation of the native state of
this mutant is extremely similar to the one in the TC5b system.
However this biggest cluster only contains 12% of all confor-
mations along the trajectory compared to the 33.4% in the case
of the TC5b system. If all clusters whose central conformation

are within a 2 Å RMSD to the native conformation are com-
bined, we get native conformation percentage of 16.9%. This
is in excellent agreement with the native cluster sizes reported
by Deng, Dai, and Levy 48 , Ghorbani et al. 49 who analysed
the same Trp-cage trajectories provided by Lindorff-Larsen
et al. 45 . Furthermore our 33.4% of assigned conformations
coincide very well with the reporting of Sidky, Chen, and Fer-
guson 50 . They found a total of 31% of conformations dis-
tributed over eight metastable macrostates and the remaining
69% as one big "molten globule" state.

The TC10b trajectory is more disordered, this can be seen
by the more homogeneous projection in 2D space (upper right
plot in Fig. 5) and the RMSD values to the native conforma-
tion in SI, Sec. S-III, Fig. S3. This is also the reason why
the clustering scheme assigned only 33.4% of all conforma-
tions to clusters after 10 iterations. If more frames should
be assigned to clusters, more clustering iterations can be per-
formed, the RMSD cutoff can be increased or both can be
done simultaneously (for the Protein B system we show the
results of this approach later in the article).

However the clusters in the very center of the map (dark
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FIG. 6. 2D encodermap space of TC5b clustered with HDBSCAN.
Representations of chosen clusters that have the same location in the
2D map as clusters found with the clustering scheme in Fig. 4 are
shown.

blue circle) are much more compact and collapsed compared
to the clusters that were found in the similar area of Trp-cage
RE’s 2D projection. Also some of the clusters that were found
in the very bottom of the left hand side of the map in case of
the replica trajectories (light blue circle) were not found at all
in the TC10b trajectory. The very large and diffuse cluster on
the left side of the map is present in both systems as well.

c. Clustering directly in 2D space of TC5b. The cluster-
ing discussed above was done in a 20 dimensional space after
applying the cc_analysis algorithm and only displayed at a
2D projection done with encodermap. In order to demonstrate
the advantages of our approach we also directly clustered the
2D encodermap space using the HDBSCAN. The encodermap
space that we used for this clustering is the same space that
we used to visualize the cc_analysis clustering in Fig. 4 and
Fig. 5. The results of this clustering and a few chosen clusters
can be seen in Fig. 6. In total this clustering assigned 13.5%
of all conformations to 362 clusters. The biggest cluster that
was found is the native cluster, however it only contains 0.8%
of all conformations compared to the 33.4% that were found
by clustering the cc_analysis space. The clustering in the 2D
space identifies some structurally very well defined clusters,
such as the clusters 0, 1 and 3, but also a lot of very diffuse
and inhomogeneous clusters. To quantify this inhomogeneity
we computed the average of the internal cluster RMSDs. For
the TC5b system our clustering workflow resulted in an aver-
age cluster RMSD of 1.34 Å and a weighted average RMSD
of 1.03 Å, where weights are defined as the fraction of each
cluster to all clustered data. The average RMSD for the direct
clustering in the 2D space is 2.25 Å and the weighted average
RMSD is 2.73 Å. This clearly shows that the internal cluster
RMSD variance is on average much larger when clustering di-
rectly in the 2D space. Furthermore the clustering in the 2D
space itself naturally highly depends on the quality of the 2D
map.

Other than the much clearer conformational identity of the
individual clusters (shown via internal cluster RMSDs), our
clustering scheme also manages to assign 60.5% of all confor-
mations to different clusters. Compared to that the clustering
in the 2D projection only assigned 9-14% of all conformations

depending on the choice of clustering parameters.
d. Comparison to other clustering approaches. For a

further assessment of our clustering scheme we have also ap-
plied a frequently used clustering routine to the TC5b data. In
Si, Sec. S-IV and Figs. S4 and S5 the results of applying the
k-means algorithm to an 11 dimensional PCA projection of
the same CVs (pairwise Cα distances of TC5b) are shown.

In summary, the scheme identified both structurally very
defined as well as quite diffuse clusters in considered sys-
tems. Even though the combination of the 40 RE trajectories
produces a very diverse data set, the clustering scheme man-
ages to assign a large amount of the conformations to clus-
ters (60%). Our clustering results for the TC10b are in a very
good agreement with the findings of other researchers48–50.
Furthermore the comparison to a clustering in the 2D space
clearly shows the superiority of using more dimensions ob-
tained with the cc_analysis algorithm in HDBSCAN over just
relying on a low-dimensional representation alone.

C. NTL9

Next we examined very long (1877 µs) simulations of
NTL945. With 9.38 million frames to cluster, this system is
an ideal candidate to demonstrate how the proposed algorithm
copes with large amounts of data. After 10 iterations 81% of
all conformations were assigned to clusters. Fig. 7 shows a
2D projection made with encodermap, where points are col-
ored according to the clusters found after ten iterations of the
scheme and a histogram of the 2D space in the upper right
corner. In total we found 157 clusters and assigned them 81%
of all conformations over 10 clustering iterations.

A comparison of the timeseries of the RMSD values to the
folded state to the respective data of the Trp-cage Anton sim-
ulations (SI, Sec. S-III, Fig. S3) reveals that the two systems
exhibit very different dynamics. While in the Trp-cage case
the RMSDs show the disordered nature of the system, in the
case of the NTL9 trajectories the RMSDs are predominantly
quite low and only spike up to larger values for rather short
time periods. This suggests that the NTL9 system resides
in a native-like state for the majority of the simulated time.
This is confirmed during the very first iteration of the cluster-
ing scheme. There we found two clusters which make up for
75.8% of all conformations.

This example also nicely illustrates how the iterative clus-
tering approach can be efficient in identifying clusters of very
different size and density (highly populated native states and
low populated clusters). After finding and removing the first
two clusters (75.8% of the data) the clustering algorithm be-
comes much more sensitive towards the less dense areas in the
CV-space in the following clustering iterations.

We compared our clustering results with other publications
analyzing the NTL9 trajectories from Ref.45. Mardt et al. 29

applied the VAMPnets to trajectory 0 and found in total 89.1%
of folded, native like conformations. If we take the clusters
we found by analysing the trajectories 0, 2 and 3 and evalu-
ate the conformations stemming from trajectory 0 (trajectory
0 resides in the native-like state for a larger fraction of the
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FIG. 7. The 2D encodermap projection of NTL9. The projection can be approximately divided into three parts: the upper part with the
most dense areas (where the native-like states are located); the lower left and right planes divided by an unpopulated vertical gap. The left
side includes various conformations with a singular beta sheet formed mostly between the beginning and the end of the protein. In contrast
on the right side lie mostly extended conformations with multiple helices along the backbone. Exemplary conformations of some of the most
populated clusters found in each of the marked areas in the map and their populations are shown. All clusters in the yellow circle are extremely
similar to the native cluster and can be summed up to a total of 76% of all conformations. The structures that are shown here make up 78.4%
of all conformations. Top right: Histogram of the 2D encodermap space.

simulated time; see RMSD plots in SI, Sec. S-III, Fig. S3,
the amount of folded, native-like conformations we find is
in very good agreement with29. Furthermore Schwantes and
Pande 47 reported the finding of three “register-shifted” states,
which are very low populated and therefore very hard to find.
“Register-shifted” refers to the identity of the specific residues
involved in forming the beta sheet structure in the native-like
states (residues 1-6, 16-21 and 35-39). With our method we
identified six different register-shifted states in the NTL9 tra-
jectories 0, 2 and 3 (see Fig. 8).

The states 0, 1 and 2 are the ones which were also found
in47. To our knowledge states 3, 4 and 5 have not been re-
ported yet. In state 0 the central of the three beta-sheet strands
is shifted downwards, whereas in state 2 the rightmost strand
is shifted downwards. In state 1 both the middle and the
rightmost strands are dislocated compared to the native state.

State 3 is similar to state 1 in the fact that both the middle
and the rightmost strands are shifted, however in state 3 the
rightmost strand is shifted upwards and not downwards like in
state 1. Among these six states state 4 is unique since there the
rightmost strand is turned by 180 degrees. Finally state 5 dif-
fer from other states in having an extra helix along the chain
between the leftmost and the middle strand. Because of this
additional helix the leftmost strand is extremely shifted com-
pared to the native state.

The identification of these register-shifted states highlights
one asset of the proposed workflow. It is able to find both
very large states (native, 74.5%) as well as very low populated
clusters (<0.001%) in the same data set.
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FIG. 8. Register-shifted states found in the NTL9 trajectories 0, 2
and 3. The residues which form the beta sheets in the native state are
colored based on their residue ID.

D. Protein-B

The last system we analysed is Protein B. This system does
not have a very stable native state, instead the three helices can
move against each other relatively freely. This can be seen in
the timeseries of the RMSD to the closest experimental ho-
mologue (1PRB) shown in SI, Sec. S-III, Fig. S3. There are
no extended periods where the values are stable over some
time, meaning there are no large free-energy barriers separat-
ing the various accessible conformations and thus the system
constantly transitions into different conformations. This has
also been found in45, where authors stated that they were un-
able to identify a free-energy barrier between folded and un-
folded states for Protein B (tested over many different reaction
coordinates).

Such a highly dynamic system is very challenging for a
conformational clustering. Here we want to show where our
algorithm has its limitations and what can be done to get a sat-
isfactory clustering result. Fig. 9 gives an overview of some
of the clusters found after ten iterations of the scheme. These
clusters include only 20% of the Protein B trajectory and thus
80% of all conformations are still unclustered.

In order to have more data assigned to clusters two param-
eters can be adjusted. First, the RMSD cutoff value can be
increased and thereby more conformations can be assigned to
the found clusters. In this specific case this adjustment is jus-
tified, since due to the low free-energy barriers between dif-
ferent states, the individual clusters are not as sharply defined
in terms of their conformations. In the 10 clustering itera-
tions which are shown in Fig. 9 we used a RMSD cutoff of
3.0 Å. In a second run we increased it to 3.5 Å. This resulted in
an assignment of 31% of all conformations to generally more
loosely defined clusters.

A second approach is to increase the amount of clustering
iterations. For the first ten clustering iterations of previously
analysed systems, we tuned the clustering parameters man-
ually. This includes the choice of the number of cc_analysis
dimensions, as well as the min_ samples and min_cluster_size

parameters of HDBSCAN. However such a manual adjust-
ment of the parameters is of course not feasible for automating
the script in order to perform many more clustering iterations.
Since the amount of cc_analysis dimensions needs to be very
rarely changed once a suitable amount has been identified in
the first clustering iteration, the automation of the script only
relies on the choice of the HDBSCAN parameters. Once the
amount of clusters found in a single iteration falls below a
certain threshold (10 clusters in this case), the numerical val-
ues of the min_samples and min_cluster_size parameters of
HDBSCAN are slightly decreased. This leads to the detec-
tion of smaller clusters that have not been identified before.
By applying this automation approach after the first 10 iter-
ations to Protein B and using a RMSD cutoff of 3.5 Å, we
could assign 44.3% of all conformations to clusters over 100
iterations, which took roughly 15 hours on our workstation.

IV. DISCUSSION

The Trp-cage system (TC5b) is a relatively small protein
which has a quite stable native conformation. The combina-
tion of 40 temperature RE trajectories however gives a very
diverse data set including (under standard conditions) very im-
probable high-energy conformations. Over ten iterations the
algorithm managed to assign 60.5% of all conformations to
clusters, which took on average 360 min per iteration over all
CPU threads (15 min per iteration on a standard office ma-
chine with 24 CPU threads). Table I shows the clustering per-
formance for the four systems discussed here. By switching
the generally static RMSD cutoff to a varying cutoff we could
show that the algorithm can both generate conformationally
very defined clusters as well as quite diffuse. The conforma-
tions assigned to such loose clusters share a general structural
motif. The ability to identify both of these cluster types is one
of the advantages of the proposed algorithm. Furthermore we
demonstrate that the clustering workflow is able to directly
compare different systems (even if they slightly differ struc-
turally), by projecting them to the same 2D map using the
encodermap algorithm. This enables a direct and visual com-
parison of the sampled phase-spaces of different trajectories
and their respective identified states. By comparing the clus-
tering result where the clustering is done in a 20-dimensional
cc_analysis space and then projected to a two-dimensional
space to a clustering where the clusters are purely found in
a 2D encodermap space, we prove an advantage using more
dimensions and combine cc_analysis with encodermap. The
scheme created clusters with a much clearer structural identity
(lower RMSD variance), while being much less dependent on
the quality of the 2D map.

We analysed long (9.38 million frames) trajectories of
NTL9 to show how the proposed scheme copes with very large
amounts of data. On average the algorithm needed 1320 min
of computation time over all CPU threads per iteration (55 min
per iteration on our office machine). Since this system also has
one hugely populated native-state, it is also a nice example to
demonstrate an advantage of the iterative clustering. After
the clusters with the native states are removed from consid-
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FIG. 9. Protein B: Exemplary conformations of some of the most populated clusters found for the Protein B system after 10 clustering
iterations and their populations; Top right: Histogram of the 2D encodermap space.

eration, the algorithm becomes much more sensitive towards
less populated areas in the following iterations. Applying this
approach we could identify three very low populated register-
shifted states, which have been reported before47, and three
not yet seen register-shifted states.

Lastly we looked at is Protein B, which is a highly dy-
namic system. To analyse this 1.04 million frames trajectory
it took on average 288 min of computation time per iteration
(12 min per iteration on our office machine). This system
has no large free-energy barriers separating the various con-
formations, which makes it very difficult to cluster. This was
confirmed by the fact that after ten clustering iterations only
20% of all conformations could be assigned to clusters. How-
ever by increasing the RMSD cutoff from 3.0 Å to 3.5 Å we
could already increase the amount of assigned conformations
to 31%, which of course resulted in slightly less structurally
defined clusters. It is also possible to automate the clustering
and run until a certain amount of conformations are assigned
to clusters or until a given number of iterations is reached. In
this specific case we ran the scheme for 100 automated itera-
tions (≈15 hours), during which 44.3% of the conformations

were assigned to clusters.
For all considered systems the proposed workflow was able

to identify defined clusters at the cost of leaving some amount
of the trajectories unassigned. As we have shown here, the
rest of the structures does not belong to any specific clusters
and can be considered as unfolded or transition states. We
intentionally do not propose any additional steps to assign
or classify those conformations as it is highly dependant on
the intended application of the data. For example in case the
data is used to build subsequent kinetic models the rest of the
points can be assigned to the nearest (e.g. in simulation time)
cluster using methods such as PCCA+ analysis51, or defined
as a metastable transition state as in Ref. 50. It can also be
defined as noise and used as discussed in Ref. 52. If such a
kinetic model would be built from the conformational clusters
that we identify, e.g., for the TC5b system, most likely, many
of the smaller clusters found in the disordered part of phase
space would be combined to form just very few macro states.

All performance data is shown in Table I and was obtained
by running the clustering scheme script on the office work-
station described in SI, Sec. S-V. The proposed workflow
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is, however, highly parallelizable, since the computationally
most expensive step is the assignment of additional data points
to the initially identified clusters in the small subset based on
the convex hull and the RMSD criterion. If a large amount of
CPU cores are available, the 2D encodermap projection array
can be split by the amount of cores and the assignment can
thereby be run in parallel which leads to a significant speed
up.

The convex hull around the clusters identified in the small
subset is used to reduce the amount of RMSD computations
that have to be performed when assigning additional confor-
mations in each clustering iteration. This however might in
principle lead to the exclusion of data points that might other-
wise have been assigned to some of the clusters. In order to
get an idea of the magnitude of this “loss” of potential cluster
members, we computed the RMSD of all data which was la-
beled as noise (623,000 conformations; 39.5%) to each of the
cluster centers of TC5b (260 clusters). This computationally
very expensive task took an additional 5 hours on our working
machine. We found that 42,000 conformations (2.7%) were
not assigned to the identified clusters due to the convex hull
criterion. When keeping in mind that the entire 10 iteration
clustering process took 2.5 hours, the "loss" of 2.7% of un-
clustered data can be considered a worthy trade-off.

Another point to consider is that due to the convex hull cri-
terion clusters can be split. If data points that would be as-
signed to a certain cluster by reason of the RMSD criterion lie
outside of the convex hull, they could be identified as another
cluster in one of the following clustering iterations. In such
cases it can make sense to merge these clusters in hindsight,
due to their very similar structural identity. In order to show-
case such a merge, we again analysed TC5b. We computed
the RMSDs between all of the 260 central cluster conforma-
tions and merged all clusters that had a RMSD of ≤ 1 Å. This
resulted in a reduction to 201 clusters with only very marginal
influence on the average internal cluster RMSDs.

The code for the encodermap algorithm
is available on the following github page
https://github.com/AG-Peter/encodermap.
The cc_analysis code can be found under
https://strucbio.biologie.uni-konstanz.de/

xdswiki/index.php/Cc_analysis.

V. CONCLUSION

We developed a clustering scheme which combines two dif-
ferent dimensionality reduction algorithms (cc_analysis and
encodermap) and the HDBSCAN in an iterative approach to
perform fast and accurate clustering of molecular dynamics
simulations’ trajectories. The cc_analysis dimensionality re-
duction method was first applied to protein simulation data.
The method projects collective variables to a usually relatively
high-dimensional (∼10-40 dim) unit sphere, separating noise
and fluctuations from important structural information. Then
the data can be efficiently clustered by density based cluster-
ing methods, such as HDBSCAN. The iterative application of
HDBSCAN allows to account for the inhomogeneity in pop-

ulation and density of the projected points, which is very typ-
ical for protein simulation data. As cc_analysis relies on the
calculations of correlation matrices between each frame, this
drastically limits the amount of data one can project simulta-
neously. To allow processing of long simulation trajectories
we included encodermap to the scheme. In addition to the ob-
vious advantage of the two-dimensional visualisation it is used
– in combination with a RMSD-based acceptance criterion –
for a fast structure-based assignment of additional points to
the clusters initially identified in the higher dimensional pro-
jection done with cc_analysis. To demonstrate the accuracy
and performance of the proposed scheme we applied the clus-
tering scheme to four test systems: replica exchange simu-
lations of Trp-cage and three long trajectories of a Trp-cage
mutant, NTL9 and Protein B generated on the Anton super-
computer. By applying the scheme to these four test systems
we could show that: the algorithm can efficiently handle very
large amounts of data, that it can be used to compare the clus-
ters of structurally different systems in one 2D map, and that it
can also be applied to cluster systems which do not have very
stable native states and are therefore intrinsically very diffi-
cult to cluster conformationally. Furthermore the algorithm is
able to find clusters independent of their size. By varying a
RMSD cutoff both conformationally very well defined clus-
ters, as well as fuzzy clusters, whose members only share an
overall structural motive, can be identified.

VI. SUPPORTING INFORMATION

Supporting Information (PDF) includes:
(S-I): Methods to chose parameters for cc_analysis and

HDBSCAN.
(S-II): Stopping criteria for the clustering workflow.
(S-III): RMSD plots of trajectories for Trp-cage, Protein B

and NTL9.
(S-IV): Comparison of the proposed clustering workflow to

PCA and k-means clustering for Trp-cage (TC5b).
(S-V): Workstation specifications.
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