SUPPLEMENTARY INFORMATION

Structural insights into the potential of 4-fluoroproline to modulate biophysical properties of proteins

Bastian Holzberger, Samra Obeid, Wolfram Welte, Kay Diederichs, and Andreas Marx*
Departments of Chemistry and Biology, Konstanz Research School Chemical Biology University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany

Andreas.Marx@uni-konstanz.de

1. General

MinElute Reaction Cleanup Kit was from Qiagen; restriction enzymes were purchased from Fermentas; LB medium (LB broth (Lennox)), carbenicillin, and lysozyme were from Roth; polyethylenimine (PEI) was from Sigma-Aldrich; Q sepharose, superdex 75, and ÄKTApurifier are from GE Healthcare; Viva Spin columns were from Sartorius Stedim Biotech; CD quartz cuvettes are from Hellma; CD spectrometer J-815, temperature controller MPTC-4090S and Spectra Manager v2 are from Jasco; oligonucleotides were purchased from Metabion or Purimex (HPLC purified); and ddCTP was from Jena Bioscience.

2. Mass spectrometry

For LC-ESI-MS, the protein sample was desalted (Viva Spin) to 5 mM Tris•HCI pH 9.2 and 0.25 mM MgCl_{2}. The samples ($20 \mu \mathrm{~L}, 50-100 \mu \mathrm{M}$) were applied to a Vertex-Column ($250 \times 8 \mathrm{~mm}$ Nucleosil 120 C 4) and eluted with a gradient of 0.05% TFA in $\mathrm{H}_{2} \mathrm{O}$ and 0.05% TFA in acetonitrile. ESI-MS was performed on an ESI-MS microTOF II (Bruker). Data were analyzed with DataAnalysis from Bruker.

3. Protein expression and purification

The E. coli codon optimized wild-type KlenTaq gene (purchased from GeneArt; amino acids 293-832 of Taq gene cloned into pET21b using the restriction sites Ndel and Notl) was amplified together with the N-terminal RBS of the pET vector by PCR. Products were purified by using MinElute Reaction Cleanup Kit and cloned into pGDR11 ${ }^{1}$ using the restriction sites EcoRI and HindIII. This modified pGDR11 vector harboring the E. coli optimized wild-type gene was used to express wild-type and (4R)-FPro-KlenTaq in E. coli JM83 without any additional N -or C-terminal amino acids except for the N -terminal Met.

Wild-type KlenTaq: A 1 L culture was grown in LB medium ($100 \mathrm{mg} / \mathrm{L}$ carbenicillin) to an OD_{600} of 0.6. Protein synthesis was induced (1 mM IPTG) and carried out for 5 h .
(4R)-FPro-KlenTaq: An in total 4 L culture was grown in NMM medium ($7.5 \mathrm{mM}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 8.5 \mathrm{mM}$ $\mathrm{NaCl}, 22 \mathrm{mM} \mathrm{KH}{ }_{2} \mathrm{PO}_{4}, 50 \mathrm{mM} \mathrm{K}_{2} \mathrm{HPO}_{4}, 1 \mathrm{mM} \mathrm{MgSO} 4,1 \mathrm{mg} / \mathrm{LCaCl}_{2}, 0.55 \mathrm{mg} / \mathrm{L} \mathrm{FeSO}_{4}, 1 \mu \mathrm{~g} / \mathrm{LCuCl} 2,1$ $\mu \mathrm{g} / \mathrm{L} \mathrm{MnCl}_{2}, 1 \mu \mathrm{~g} / \mathrm{L} \mathrm{ZnCl}_{2}, 1 \mu \mathrm{~g} / \mathrm{L} \mathrm{Na}_{2} \mathrm{MoO}_{4}, 20 \mathrm{mM}$ glucose, $10 \mathrm{mg} / \mathrm{L}$ thiamine, $10 \mathrm{mg} / \mathrm{L}$ biotin, $100 \mathrm{mg} / \mathrm{L}$ carbenicillin, and $50 \mathrm{mg} / \mathrm{L}$ of each amino acid except Pro) with $35 \mu \mathrm{M}$ Pro until stationary phase was reached ($\mathrm{OD}_{600} 0.4-0.6$). The cells were additionally incubated for 3 h at $37^{\circ} \mathrm{C}$. Cells were harvested ($3,800 \mathrm{rpm}, 12 \mathrm{~min}, 4{ }^{\circ} \mathrm{C}$) and resuspended in 4 L of NMM without Pro. (4R)-FPro was added to a final concentration of 1 mM . After incubation for 20 min at $37^{\circ} \mathrm{C}$, protein synthesis was induced (1 mM IPTG) and carried out overnight.
After harvesting ($4,500 \times \mathrm{g}, 40 \mathrm{~min}, 4^{\circ} \mathrm{C}$), cells were in both cases resuspended in lysis buffer (50 mM Tris•HCl pH 8.55, $10 \mathrm{mM} \mathrm{MgCl} 2,16 \mathrm{mM} \mathrm{NH} \mathrm{SO}_{4}, 0.1 \%$ Thesit, 0.1% Triton X, 1 mM PMSF; 20 mL per 1 L expression volume). Lysozyme was added to a final concentration of $0.7 \mathrm{mg} / \mathrm{mL}$ and cells were lysed for 1 h at $\mathrm{r} . \mathrm{t}$. followed by heat denaturation of host proteins $\left(75^{\circ} \mathrm{C}, 45 \mathrm{~min}\right)$ and centrifugation $(4,500 \times \mathrm{g}$, $60 \mathrm{~min}, 4^{\circ} \mathrm{C}$). Supernatants were treated stepwise with 5% polyethylenimine (PEI) to remove bacterial DNA. After each PEI addition step the suspensions were shaken ($30 \mathrm{~min}, 4^{\circ} \mathrm{C}$) and centrifuged $\left(4,500 \times \mathrm{g}, 45 \mathrm{~min}, 4^{\circ} \mathrm{C}\right)$. These steps were repeated until almost no more precipitate was formed. Afterwards, lysates were filtered through syringe sterile filters to remove residual particles. Anion exchange chromatography was carried out using Q sepharose on an ÄKTApurifier. The protein was eluted applying $0-1 \mathrm{M} \mathrm{NaCl}$ in 20 mM Tris $\cdot \mathrm{HCl}$ (pH 8.55), 1 mM EDTA, and $1 \mathrm{mM} \beta$-mercaptoethanol (4 ${ }^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}$). Protein fractions were controlled by SDS PAGE, pooled and concentrated using Viva Spin columns. Size exclusion chromatography was carried out using superdex 75 on an ÄKTApurifier (20 mM Tris• $\mathrm{HCl} \mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, $1 \mathrm{mM} \beta$-mercaptoethanol, $4{ }^{\circ} \mathrm{C} ; 1 \mathrm{~mL} / \mathrm{min}$). Fractions were controlled by SDS PAGE. Pure protein was pooled and stored at $4{ }^{\circ} \mathrm{C}$ until further use.

4. Figures

Figure S1. a) SDS PAGE gel of purified wild-type KlenTaq (wt) and (4R)-FPro-KlenTaq (FPro). M: Marker [kDa]. b, c) Deconvoluted ESI mass spectra profiles of b) wild-type KlenTaq (60854.0 Da; calcd (1+): 60855.1) and c) (4R)-FPro-KlenTaq (61429.3 and 61410.3 Da ; calcd (1+): 61430.9 (100.0\%) and 61412.9 Da (96.9\%)). M : molecular mass [Da].

Figure S2. CD spectroscopy. Thermal denaturation of a) wild-type KlenTaq and b) (4R)-FPro-KlenTaq following the ellipticity at 208 nm (black) and 222 nm (red) in PBS buffer (pH 7.4). Melting temperatures were determined by sigmoidal fitting and calculating the derivatives of two separate experiments.

Figure S3. Active site of wild-type KlenTaq. Inner coordination spheres showing Mg^{2+} ions (green). The 3^{\prime}-end of the primer, the incoming triphosphate (ddCTP) and the respective amino acids (Y611, D610, D785, and E786) are shown in grey. A water molecule is shown as red sphere. The lower metal ion is probably coordinated by the second conformation of E786 (red dashes). 2mFo-DFc map at 1σ is shown around E786.

5. Tables

Table S1. Data collection and refinement statistics.

	wild-type KlenTaq	(4R)-FPro-KlenTaq
Data collection		
Space group	P3 21	P3 21
Cell dim.		
$a, b, c[\AA]$	107.8, 107.8, 89.6	109.6, 109.6, 91.0
$\alpha, \beta, \gamma\left[{ }^{\circ}\right]$	90, 90, 120	90, 90, 120
Resolution [\AA]	46.67-1.89 (2.01-1.89)	47.47-2.44 (2.59-2.44)
$R_{\text {meas }}$ [\%]	14.0 (189.9)	23.6 (172.7)
I / σ_{I}	14.52 (1.13)	12.34 (1.17)
Completeness [\%]	99.6 (97.7)	99.7 (98.5)
Redundancy	10.6 (8.6)	10.5 (8.7)
Refinement		
Resolution [\AA]	46.67-1.89 (1.91-1.89)	42.09-2.44 (2.49-2.44)
No. reflections	92174	45237
$R_{\text {work }} / R_{\text {free }}$	21.4 / 25.2 (40.6 / 39.1)	23.3 / 28.2 (37.9 / 35.7)
No. residues / average B-factors		
Protein	540 / 36.3	539 / 44.6
Primer,Template	12, 14 / 34.0, 39.2	12, 16 / 30.7, 43.4
Triphosphate	ddCTP / 36.4	ddCTP / 30.7
Ion (active site)	$2 \mathrm{Mg}^{2+} / 32.8$	$\mathrm{Mg}^{2+}+\mathrm{Mn}^{2+} / 36.8$
Water	445 / 37.9	156 / 28.8
R.m.s. deviations		
Bond lengths [\AA]	0.005	0.008
Bond angles [${ }^{\circ}$]	0.628	0.587
Ramachandran statistics [\%]		
Most favored regions	92.6	94.2
Additionally allowed regions	7.2	5.5
Generously allowed regions	0.0	0.0
Disallowed regions	0.2	0.2
PDB ID	4DLG	4DLE

Table S2. Torsion angles [${ }^{\circ}$], peptide bond conformations, and prolyl ring puckering conformations of wild-type KlenTaq. Alternative conformations are depicted as \mathbf{a} and \mathbf{b}, respectively.

Pro	ω (Xaa-Pro)	peptide ${ }^{[a]}$	Φ	Ψ	χ^{1}	χ^{2}	χ^{3}	χ^{4}	$\chi^{\text {Pro [b] }}$	pucker ${ }^{[c]}$
298-a	-178.7	trans	-66.7	153.4	24.7	-35.3	31.3	-15.9	107.2	endo
298-b	-179.1	trans	-65.3	152.6	-21.6	34.2	-32.5	19.3	-107.5	exo
300	1.1	cis	-92.1	162.8	34.9	-34.5	20.2	2.6	87.0	endo
301	175.2	trans	-83.4	162.5	32.4	-37.3	27.0	-6.2	102.9	endo
302	174.6	trans	-70.0	167.2	24.5	-34.7	30.5	-15.2	104.8	endo
316	-177.2	trans	-62.1	-27.7	22.8	-34.5	31.9	-17.9	107.2	endo
336-a	177.3	trans	-64.5	-42.4	21.7	-33.0	30.5	-17.1	102.2	endo
336-b	176.8	trans	-63.0	-44.1	-21.9	34.3	-32.3	18.9	-107.3	exo
338-a	-174.1	trans	-55.7	-46.7	19.4	-33.2	33.2	-21.6	107.5	endo
338-b	-174.5	trans	-54.5	-47.9	-26.1	35.5	-30.3	13.9	-105.7	exo
368	-178.4	trans	-73.5	142.6	27.9	-34.9	27.5	-9.7	100.1	endo
369	177.1	trans	-78.6	143.4	29.2	-33.7	24.3	-5.4	92.7	endo
373	179.3	trans	-56.8	-28.2	-26.2	35.5	-30.2	13.7	-105.7	exo
382-a	-178.9	trans	-62.0	-11.2	-23.6	35.0	-31.9	17.1	-107.7	exo
382-b	-178.4	trans	-63.3	-9.8	22.1	-33.7	31.4	-17.7	104.9	endo
387-a	177.8	trans	-62.5	-29.3	21.8	-34.1	32.3	-19.0	107.2	endo
387-b	177.4	trans	-61.2	-30.8	-24.1	35.0	-31.4	16.4	-107.0	exo
436-a	177.6	trans	-67.8	-29.0	-20.6	34.3	-33.7	21.2	-109.8	exo
436-b	177.8	trans	-69.0	-27.6	24.2	-35.2	31.6	-16.5	107.5	endo
481	179.2	trans	-79.1	153.0	29.4	-35.3	26.6	-7.8	99.1	endo
501-a	-179.9	trans	-66.8	135.1	24.4	-34.9	31.0	-15.7	106.0	endo
501-b	179.9	trans	-65.8	134.4	-21.5	34.3	-32.7	19.6	-108.1	exo
527	-178.7	trans	-63.8	-38.2	-22.4	34.8	-32.8	19.1	-109.1	exo
548-a	-175.9	trans	-71.6	-38.0	26.1	-35.0	29.4	-12.8	103.3	endo
548-b	-176.3	trans	-69.8	-40.1	-18.4	33.4	-34.6	23.6	-110.0	exo
550	-179.8	trans	-64.8	-22.0	-23.9	35.7	-32.8	18.0	-110.4	exo
555	-173.9	trans	-68.9	-13.1	26.7	-35.8	30.1	-13.3	105.9	endo
579	-4.8	cis	-94.8	169.4	34.6	-34.1	19.7	3.0	85.4	endo
585	-176.0	trans	-49.6	148.1	-28.6	35.4	-27.6	9.3	-100.9	exo
589-a	178.6	trans	-53.4	-37.7	-28.9	35.8	-28.0	9.6	-102.3	exo
589-b	179.0	trans	-54.6	-36.5	16.2	-32.0	34.5	-25.2	108.0	endo
650	177.9	trans	-51.7	154.5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
656	177.8	trans	-50.7	-33.9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
685	177.6	trans	-56.1	155.8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
701	-178.4	trans	-69.8	-27.8	$n . a$.	n.a.	n.a.	$n . a$.	$n . a$.	n.a.
731	-176.6	trans	-72.5	-28.3	27.5	-35.8	29.3	-11.9	104.5	endo
752	178.4	trans	-62.9	-29.4	-25.3	36.4	-32.5	16.7	-110.9	exo
770	179.1	trans	-67.6	-22.5	24.2	-35.5	32.2	-17.2	109.0	endo
792	174.2	trans	-58.1	146.5	-26.3	35.6	-30.1	13.6	-105.7	exo
812	-174.0	trans	-53.0	138.8	-27.7	36.4	-30.1	12.7	-106.8	exo
816-a	179.4	trans	-66.5	143.9	24.4	-35.2	31.3	-16.1	107.0	endo
816-b	179.1	trans	-65.3	143.2	-22.2	34.5	-32.5	19.0	-108.2	exo

n.a. not assigned (lack of sufficient electron density)
[a] peptide bond conformation of Xaa-Pro
[b] $\chi^{\text {Pro }}=\chi^{1}+\chi^{3}-\chi^{2}-\chi^{4}$
[c] prolyl ring puckering based on χ^{1} and $\chi^{\text {Pro }}$

Table S3. Torsion angles [${ }^{\circ}$], peptide bond conformations, and prolyl ring puckerings of (4R)-FPro-KlenTaq. Alternative conformations are depicted as \mathbf{a} and \mathbf{b}, respectively.

(4R)-FPro	$\begin{gathered} \omega \text { (Xaa- } \\ \text { (4R)-FPro) } \end{gathered}$	peptide ${ }^{\text {[a] }}$	Φ	Ψ	χ^{1}	χ^{2}	χ^{3}	χ^{4}	$\chi^{\text {Pro [b] }}$	pucker ${ }^{[c]}$
298	-179.0	trans	-80.0	126.5	-21.8	33.7	-31.8	18.6	-105.9	exo
300-a	4.3	cis	-84.4	173.2	-1.7	-15.3	25.8	-28.2	67.6	C^{δ} out of plane
300-b	5.0	cis	-83.0	174.6	-21.5	34.0	-32.0	18.4	-105.8	exo
301	173.2	trans	-88.1	168.3	15.2	-33.0	37.1	-28.8	114.1	endo
302	178.6	trans	-72.0	167.9	-24.4	35.1	-31.4	16.1	-106.9	exo
316	-177.4	trans	-63.0	-23.4	-23.2	35.1	-32.5	18.1	-108.8	exo
336	178.3	trans	-73.9	-61.4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
338	-173.7	trans	-60.8	-45.5	-27.6	35.0	-27.9	10.3	-100.8	exo
368	-174.9	trans	-65.9	157.9	-23.9	34.9	-31.4	16.5	-106.7	exo
369	176.7	trans	-83.0	116.5	-19.9	29.9	-27.4	14.8	-92.0	exo
373	-179.5	trans	-59.9	-29.4	-27.3	34.8	-28.0	10.7	-100.8	exo
382	179.4	trans	-66.2	-10.6	-28.0	34.7	-27.1	9.2	-99.0	exo
387	177.5	trans	-61.9	-28.6	-28.8	33.5	-24.4	5.8	-92.5	exo
436	172.9	trans	-75.3	-31.7	-26.1	36.2	-31.5	14.8	-108.6	exo
481-a	179.1	trans	-90.3	150.1	8.6	-25.8	32.1	-27.9	94.5	endo
481-b	179.0	trans	-90.5	150.3	-25.0	35.9	-32.0	16.4	-109.2	exo
501	-177.5	trans	-84.3	137.6	-23.5	34.3	-30.8	16.2	-104.7	exo
527	-179.8	trans	-69.4	-19.8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
548	-175.1	trans	-71.2	-44.8	-21.8	36.2	-35.8	22.4	-116.2	exo
550	179.6	trans	-63.9	-33.6	-27.5	36.5	-30.7	13.1	-107.8	exo
555	-174.1	trans	-63.0	-35.3	-25.6	34.4	-29.0	12.8	-101.8	exo
579	-2.2	cis	-98.9	163.4	31.2	-35.8	25.5	-5.4	98.0	endo
585	-173.9	trans	-54.9	151.8	-28.2	34.3	-26.1	7.7	-96.3	exo
589	177.2	trans	-59.9	-43.3	-32.0	32.9	-20.5	-0.5	-84.9	exo
650	176.3	trans	-63.9	162.9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
656	179.8	trans	-62.3	-17.7	-33.0	32.8	-19.4	-2.2	-83.0	exo
685	177.2	trans	-62.4	156.0	-31.0	34.2	-23.4	3.3	-91.9	exo
701	-176.5	trans	-87.7	49.8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
731	-172.7	trans	-101.2	8.0	-15.8	31.6	-34.2	25.2	-106.8	exo
752	-179.2	trans	-65.7	-39.5	-25.3	36.9	-33.6	17.6	-113.5	exo
770	179.2	trans	-64.5	-28.2	-26.1	36.1	-31.4	14.8	-108.4	exo
792	174.3	trans	-62.1	146.2	-27.0	34.0	-27.0	9.7	-97.7	exo
812	-174.3	trans	-56.6	119.2	-27.4	35.3	-28.6	11.1	-102.5	exo
816	179.8	trans	-70.6	135.3	-28.7	36.0	-28.6	10.2	-103.6	exo

n.a. not assigned (lack of sufficient electron density)
[a] peptide bond conformation of Xaa-(4R)-FPro
[b] $\chi^{\text {Pro }}=\chi^{1}+\chi^{3}-\chi^{2}-\chi^{4}$
[c] prolyl ring puckering based on χ^{1} and $\chi^{\text {Pro }}$

