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(15) [rockrose averages 23 times greater ground
cover than dove’s-foot cranesbill per 100 × 100 m
sample area that contains host plants (fig. S1)
(11)]. The long-lived perennial rockrose also has
more stable populations than does the annual
and ruderal dove’s-foot cranesbill. These differ-
ences between the plants enable rockrose to sup-
port larger (Fig. 1, C and D) and more stable
brown argus populations [Levene’s test for equal-
ity of variances: W = 10.97, n = 2 30-generation
sequences, P = 0.002 (Fig. 1D)]. Moreover,
rockrose frequently grows in areas of short turf
on southerly facing slopes (fig. S2) (11, 20), which
provide warmmicroclimates [southerly aspects
receive greater direct radiation and achieve high-
er maximum summer temperatures (21)]. As
recently as the early 1980s, the brown argus was
mainly associated with rockrose populations
on sheltered south-facing slopes (12). The few
historical records of Geraniaceae-feeding pop-
ulations from this period were predominantly
in sand dunes (13), which also provide warm
microclimates.

Summer temperatures in Britain from 1990 to
2009 were on average 0.78°C warmer than be-
tween 1800 and 1989, and this is likely to have
increased the thermal suitability of sites for brown
argus, especially those that are not southerly fac-
ing. This would have increased the ability of
Geraniaceae-containing sites to support brown
argus population growth; there was a 5.3-fold
increase in brown argus population density in
Geraniaceae sites between 1976–1985 and 2000–
2009 (Spearman’s rank correlation between year
and density on Geraniaceae: rs = 0.76, n = 34
years, P < 0.001) (Fig. 1C). In contrast, no in-
crease in overall population density occurred at
rockrose sites (Spearman’s rank correlation be-
tween year and density on rockrose: rs = 0.25, n =
34 years, P = 0.162; 1.1-fold density increase
from 1976–1985 to 2000–2009) (Fig. 1C), even
though butterfly abundance increased temporarily

during warm summers. This suggests that other
factors limit population density on rockrose (sup-
plementary text).

Based on 100 × 100 m grid squares with re-
cords of host plants, dove’s-foot cranesbill is 4 to
17 times more widespread than is rockrose in
counties where rapid expansion has taken place
(Fig. 3) (11). Once the brown argus can establish
populations on cranesbill, the high frequency of
cranesbill populations in the landscape permit it
to spread between populations of this host plant
without the need for long-distance dispersal. The
butterfly’s capacity to use Geranicaeae has been
aided by the spread of butterfly phenotypes that
readily select Geraniaceae plants for egg-laying
(15) and by a degree of escape from natural
enemies (parasitoids) associated with historical
rockrose sites (22). These processes have come
together to generate an unexpectedly rapid trans-
formation in the metapopulation dynamics of the
butterfly from a highly localized distribution as-
sociatedwith southerly facing rockrose-containing
calcareous grasslands to widespread use of vir-
tually any grassland with rockrose or Geranicaeae
host plants. Ecological and evolutionary adjust-
ments by the butterfly, interactingwith alternative
host plants that differ in their niches and life-
history traits, have resulted in rapid range ex-
pansion of this previously rare and declining
butterfly. We suggest that altered interactions
among species do not necessarily constrain dis-
tribution changes but can facilitate expansions.
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Linking Crystallographic Model
and Data Quality
P. Andrew Karplus1 and Kay Diederichs2*

In macromolecular x-ray crystallography, refinement R values measure the agreement between
observed and calculated data. Analogously, Rmerge values reporting on the agreement between multiple
measurements of a given reflection are used to assess data quality. Here, we show that despite
their widespread use, Rmerge values are poorly suited for determining the high-resolution limit
and that current standard protocols discard much useful data. We introduce a statistic that
estimates the correlation of an observed data set with the underlying (not measurable) true signal;
this quantity, CC*, provides a single statistically valid guide for deciding which data are useful.
CC* also can be used to assess model and data quality on the same scale, and this reveals when
data quality is limiting model improvement.

Accurately determined protein structures
provide insight into how biology func-
tions at the molecular level and also

guide the development of new drugs and protein-

based nanomachines and technologies. The large
majority of protein structures are determined by
x-ray crystallography, where measured diffrac-
tion data are used to derive a molecular model.

It is surprising that, despite decades of method-
ology development, the question of how to se-
lect the resolution cutoff of a crystallographic
data set is still controversial, and the link be-
tween the quality of the data and the quality of
the derived molecular model is poorly under-
stood. Here, we describe a statistical quantity
that addresses both of these issues and will lead
to improved molecular models.

The measured data in x-ray crystallography
are the intensities of reflections, and these yield
structure factor amplitudes each with unique h,
k, and l indices that define the lattice planes. The
standard indicator for assessing the agreement of

1Department of Biochemistry and Biophysics, Oregon State
University, Corvallis, OR 97331, USA. 2Department of Biol-
ogy, University of Konstanz, Box 647, D-78457 Konstanz,
Germany.
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a refined model with the data is the crystallo-
graphic R value, defined as

R ¼
∑
hkl

jFobsðhklÞ − FcalcðhklÞj

∑
hkl

FobsðhklÞ
ð1Þ

whereFobs(hkl) andFcalc(hkl) are the observed and
calculated structure factor amplitudes, respective-
ly.R is 0.0 for perfect agreement with the data, and
R is near 0.59 for a randommodel (1). Because R
can be made arbitrarily low for models having suf-
ficient parameters to overfit the data, Brünger (2)
introduced Rfree as a cross-validatedR on the basis
of a small subset of reflections not used during
refinement. The R for the larger “working” set of
reflections is then referred to as Rwork.

Crystallographic data quality is commonly
assessed by an analogous indicator Rmerge [orig-
inally (3) Rsym], which measures the spread of n
independent measurements of the intensity of a
reflection, Ii(hkl), around their average, IðhklÞ:

Rmerge ¼
∑
hkl
∑
n

i¼1
jIiðhklÞ − IðhklÞj

∑
hkl
∑
n

i¼1
IiðhklÞ

ð2Þ

In 1997, it was discovered that because Ii(hkl)
values influence IðhklÞ, the Rmerge definition must

be adjusted by a factor of
ffiffiffi
n

p
/(n – 1) to give

values that are independent of themultiplicity (4).
The multiplicity-corrected version, called Rmeas,
reliably reports on the consistency of the indi-
vidual measurements. A further variant, Rpim (5),
reports on the expected precision of IðhklÞ and
is lower by a factor of 1/

ffiffiffi
n

p
factor compared

with Rmeas. Because the strength of diffraction
decreases with resolution, a high-resolution cut-
off is applied to discard data considered so noisy
that their inclusion might degrade the quality of
the resulting model. Data are typically trun-
cated at a resolution before the Rmerge (or Rmeas)
value exceeds ~0.6 to 0.8 and before the empirical
signal-to-noise ratio, 〈I=sðIÞ〉, drops below ~2.0
(6) (fig. S1). The uncertainty associated with these
criteria is illustrated by a recent review that
concluded “an appropriate choice of resolution
cutoff is difficult and sometimes seems to be per-
formed mainly to satisfy referees” (6).

That these criteria result in high-resolution
cutoffs that are too conservative is illustrated here
using an example data set (EXP) collected for
a cysteine-bound complex of cysteine dioxygen-
ase (CDO); the EXP data have an average in-
tensity about 7% as strong as the data originally
used to determine the structure at 1.42 Å reso-
lution (PDB 3ELN; Rwork/Rfree = 0.135/0.177)
(7, 8). Standardized model refinements starting
with a 1.5 Å resolution unliganded CDO struc-
ture (PDB code 2B5H) (9) were carried out against
the EXP data for a series of high-resolution cut-
offs between 2.0 and 1.42 Å resolution (table S1).
As R value comparisons are only meaningful

if calculated at the same resolution, we evaluated
paired refinements made with adjacent resolu-
tion limits using Rwork and Rfree values calcu-
lated at the poorer resolution limit. Improvement
is indicated by drops in Rfree or increases in
Rwork at the same Rfree (meaning the model is
less overfit). This analysis revealed that every
step of added data improved the resulting model
(Fig. 1). Consistent with this, difference Fourier
maps show a similar trend in signal versus res-
olution (fig. S2), and geometric parameters of
the resulting models improve with resolution
(table S2).

The proven value of the data out to 1.42 Å
resolution contrasts strongly with the Rmeas and
〈I=sðIÞ〉 values at that resolution (>4.0 and ~0.3,
respectively) (Fig. 2), which are far beyond the
limits currently associated with useful data. Ap-
plying the typical standards described above, this
data set would have been truncated at ~1.8 Å
resolution, which would halve the number of
unique reflections in the data set (table S1) and
would yield a worse model.

It is striking to observe the different behavior
at high resolution of the crystallographic versus
the data-quality R values, with the one remain-
ing below 0.40 and the other diverging toward
infinity (Fig. 2). Consideration of the Rmerge for-
mula rationalizes this divergence, because the
denominator (the average net intensity) approaches
zero at high resolution, but the numerator be-
comes dominated by background noise and is
essentially constant. Thus, despite their similar
names and mathematical definitions, data-quality

Fig. 1. Higher-resolution data, even if weak, im-
proves refinement behavior. For each incremental
step of resolution from X→Y (top legend), the pair
of bars gives the changes in overall Rwork (blue)
and Rfree (red) for the model refined at resolution
Y with respect to those for the model refined at
resolution X, with both R values calculated at
resolution X. The first pair of bars shows that Rwork
and Rfree dropped 0.38% and 0.34%, respective-
ly, upon isotropic refinement when the refine-
ment resolution limit was extended from 2.0 to
1.9 Å; the other pairs of bars show the improve-
ment upon anisotropic refinement.

Fig. 2. Data quality R values behave differently than those from crystallographic refinement, and
useful data extend well beyond what standard cutoff criteria would suggest. Rmeas (squares) and Rpim
(circles) are compared with Rwork (blue) and Rfree (red) from 1.42 Å resolution refinements against the
EXP data set. 〈I/s(I )〉 (gray) is also plotted. (Inset) A close-up of the plot beyond 2 Å resolution.
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R values are not comparable to R values from
model refinement, and there is no valid basis for
the commonly applied criterion that data are not
useful beyond a resolution where Rmeas (or Rmerge
or Rpim) rises above ~0.6. As suggested byWang
(10), 〈I=sðIÞ〉 at a much lower level than gen-
erally recommended could be used to define the
cutoff, but this has the problem that sðIÞ values
can be misestimated (6, 11).

With current standards not serving as reliable
guides for selecting a high-resolution cutoff, we
investigated the use of the Pearson correlation
coefficient (CC) (12) as a parameter that could
potentially assess both data accuracy and the
agreement of model and data on a common scale.
Pearson’s CC is already used in crystallography,
in that a CC value of 0.3 between independent
measurements of anomalous signals has become
the recommended criterion for selecting the high-
resolution cutoff of the data to be used for de-
fining the locations of the anomalous scatterers
(13). Following a procedure suggested earlier
(4), we divided the unmerged EXP data into two
parts, each containing a random half of the mea-
surements of each unique reflection. Then, the
CC was calculated between the average intensi-
ties of each subset. This quantity, denoted CC1/2,
is near 1.0 at low resolution and drops to near 0.1
at high resolution (Fig. 3). According to Student’s
t test (12), the CC1/2 of 0.09 for the ~2100 re-
flection pairs in the highest resolution bin is sig-
nificantly different from zero (P = 2 × 10−5).

This high significance occurs even though
CC1/2 should be expected to underestimate the
information content of the data. This is because
for weak data, CC1/2 measures the correlation of
one noisy data set (the first half-data set) with
another noisy data set (the other half-data set),
whereas the true level of signal would be mea-
sured by what could be called CCtrue, the corre-
lation of the averaged data set (less noisy because
of the extra averaging) with the noise-free true
signal. Although the true signal would normally
not be known, for the EXP test case, the 3ELN
data provide a reference that has much lower
noise and should be much closer to the under-
lying true data. The CC calculated between the
EXP and 3ELN data sets is indeed uniformly
higher than CC1/2 (Fig. 3), dropping only to 0.31
in the highest resolution bin (Student’s t test
P = 10−64 ).

We next sought an analytical relation between
CC1/2 and CCtrue. Using only the assumption that
errors in the two half-data sets are random and,
on average, of similar size (see supplementary
text), we derived the relation

CC* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CC1=2

1þ CC1=2

s
ð3Þ

where CC* estimates the value of CCtrue, based
on a finite-size sample. Equation 3 has been used
in electron microscopy studies for a similar pur-
pose (14) and is also related to the Spearman-
Brown prophecy formula used in psychometrics

to predict what test length is required to achieve
a certain level of reliability (15). CC*, when com-
puted with Eq. 3, agrees reasonably well with
the CC for the EXP data compared with the
3ELN reference data, which shows that system-
atic factors influencing a real data set are not
large enough to greatly perturb this relation (Fig.
4A). CC* provides a statistic that not only as-
sesses data quality but also allows direct com-
parison of crystallographic model quality and
data quality on the same scale. In particular,
CCwork and CCfree—the standard and cross-
validated correlations of the experimental in-
tensities, with the intensities calculated from the
refined molecular model—can be directly com-
pared with CC* (Fig. 4B). A CCwork larger than
CC* implies overfitting, because, in that case,
the model agrees better with the experimental
data than the true signal does. A CCfree smaller

than CC* (such as is seen at low resolution) in-
dicates that the model does not account for all
of the signal in the data. A CCfree closely match-
ing CC*, such as at high resolution in Fig. 4B,
implies that data quality is limiting model im-
provement. In this high-resolution region, the
model, which was refined against EXP, corre-
lates much better with the more accurate 3ELN
than with the EXP data (Fig. 4B). This shows
that, as is common for parsimonious models
(16), the constructed molecular model is a better
predictor of the true signal than are the experi-
mental data from which it was derived. On a re-
lated point, because current estimates of a model’s
coordinate error do not take the data errors into
account (17–19), the model accuracy is actually
better than these methods indicate.

We verified, using a simulated data set (20)
and two further test cases, that these findings are

Fig. 3. Signal as a function
of resolution as measured by
correlation coefficients. Plotted
as a function of resolution
for the EXP data are CC1/2
(diamonds) and the CC for
a comparison with the 3ELN
reference data set (triangles).
〈I/s(I )〉 (gray) is also shown.
All determined CC1/2 values
shown have expected stan-
dard errors of <0.025 (21,22).

Fig. 4. The CC1/2/CC* relation and the utility of comparing CC* with CCwork and CCfree from a refined
model. (A) Plotted is the analytical relation (Eq. 3) between CC1/2 and CC* (black curve). Also roughly
following the CC* curve are the CC values for the EXP data compared with 3ELN (triangles) as a
function of CC1/2. (B) Plotted as a function of resolution are CC* (black solid) for the EXP data set, as
well as CCwork (blue dashed) and CCfree (red dashed) calculated on intensities from the 1.42 Å refined
model. Also shown are values for CCwork (blue dotted) and CCfree (red dotted) between the 1.42 Å
refined model and the 3ELN data set.
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not specific to the EXP data (tables S3, S4, and
S5, and fig. S3). Thus, CC* (or CC1/2) is a robust,
statistically informative quantity useful for de-
fining the high-resolution cutoff in crystallog-
raphy. These examples show that with current
data reduction and refinement protocols, it is
justified to include data out to well beyond cur-
rently employed cutoff criteria (fig. S4), because
the data at these lower signal levels do not
degrade the model, but actually improve it. Ad-
vances in data-processing and refinement pro-
cedures, which until now have not been optimized
for handling such weak data, may lead to further
improvements in model accuracy. Finally, we
emphasize that the analytical relation (Eq. 3)
between CC1/2 and CC* is general, and thus,
CC* may have similar applications for data- and
model-quality assessment in other fields of science
involving multiply measured data.
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Structures from Anomalous Diffraction
of Native Biological Macromolecules
Qun Liu,1 Tassadite Dahmane,2 Zhen Zhang,2 Zahra Assur,2 Julia Brasch,2 Lawrence Shapiro,2

Filippo Mancia,3 Wayne A. Hendrickson1,2,3,4*

Crystal structure analyses for biological macromolecules without known structural relatives entail
solving the crystallographic phase problem. Typical de novo phase evaluations depend on incorporating
heavier atoms than those found natively; most commonly, multi- or single-wavelength anomalous
diffraction (MAD or SAD) experiments exploit selenomethionyl proteins. Here, we realize routine
structure determination using intrinsic anomalous scattering from native macromolecules. We devised
robust procedures for enhancing the signal-to-noise ratio in the slight anomalous scattering from
generic native structures by combining data measured from multiple crystals at lower-than-usual
x-ray energy. Using this multicrystal SAD method (5 to 13 equivalent crystals), we determined structures
at modest resolution (2.8 to 2.3 angstroms) for native proteins varying in size (127 to 1148 unique
residues) and number of sulfur sites (3 to 28). With no requirement for heavy-atom incorporation,
such experiments provide an attractive alternative to selenomethionyl SAD experiments.

Crystallographic structure determinations
for biomolecules require the retrieval of
phases, which are lost when measuring

x-ray diffraction patterns. For the first protein
crystal structures, phase evaluation was by the
method of multiple isomorphous replacement
(MIR) with derivatives incorporating mercury

[atomic number (Z) = 80] or other heavy atoms.
Once many structures were known, phases could
often be estimated by the method of molecular
replacement; however, de novo structure de-
termination remained essential for molecules
without adequately close structural relatives.
Multiwavelength anomalous diffraction (MAD)
analyses (1), which exploit element-specific scat-
tering from x-ray resonance with atomic orbitals,
came to be used increasingly for de novo struc-
tures as tunable synchrotron beamlines devel-
oped (2). Whereas MAD gives definitive phase
information, its single-wavelength counterpart,
SAD, is ambiguous in defining only trigonomet-
ric sines of phases. This phase ambiguity could
be resolved once density-modification proce-
dures, based largely on molecular boundaries

and symmetry, were devised (3, 4); and SAD
then surged (5). MAD and SAD now dominate
de novo phasing, as they have the advantage that
lighter atoms can be effective sources of phasing
signals. Selenomethionine is easily incorporated
into proteins (6), and selenium (Z = 34) is now
by far the most-used phasing element (2). With
MAD and SAD,metal atoms such as iron (Z = 26)
present in some native proteins can also suffice.

Sulfur (Z = 16) is the heaviest element inmost
native proteins. Its K-shell resonance at 2.47 keV
(l = 5.02 Å) is inaccessible to standard MAD ex-
periments, and its anomalous scattering at con-
ventional wavelengths is slight; nevertheless,
sulfur anomalous scattering can suffice for SAD
phasing. The structure of crambin was the first to
be determined from sulfur SAD phasing (7),
although the experiment was not then identified
as SAD. Later, broader effectiveness of sulfur
SAD was demonstrated with tests on lysozyme
(8) and in solving the structure of obelin (9).
Similarly, the feasibility of phosphorous SAD
was demonstrated for nucleic acids (10). The
motivation for truly routine native SAD is great,
because heavy-atom incorporations are often
problematic, even for the most reliable seleno-
methionine. Subsequent optimization of native-
SAD experiments has included developments for
low-energy measurements (11), assessments of
the impact of high data redundancy (10, 11), op-
timal wavelength selection (12), control of com-
plications from radiation damage (13, 14), and
the use of home-source CrKa radiation (15).

Besides test cases and technical developments,
some novel protein structures beyond crambin
and obelin have been determined by sulfur SAD
analyses. As compared with the swelling num-
bers of SAD structures in general, however, the
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