Acta Crystallographica Section F
Structural Biology
Communications
ISSN 2053-230X

Georg Vohl, ${ }^{\text {a,b }}$ Ruslan Nedielkov, ${ }^{\text {c }}$ Björn Claussen, ${ }^{\text {b }}$ Marco S. Casutt, ${ }^{\text {a }}$ Thomas Vorburger, ${ }^{\text {d }}$ Kay Diederichs, ${ }^{\text {c }}$ Heiko M. Möller, ${ }^{\text {c }} \ddagger$ Julia Steuber ${ }^{\text {d }}$ and Günter Fritz ${ }^{\text {a }}$

${ }^{\text {a }}$ Institute for Neuropathology, University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, Germany, ${ }^{\mathbf{b}}$ Hermann-Staudinger-Graduate School, University of Freiburg, Hebelstrasse 27, 79104 Freiburg, Germany, ${ }^{\text {c Department of }}$ Chemistry and Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78457, Germany, and ${ }^{\mathrm{d}}$ Department of Microbiology, University of Hohenheim, 70599 Garbenstrasse 30, Stuttgart, Germany
\# Current address: Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany.

Correspondence e-mail:
guenter.fritz@uniklinik-freiburg.de

Received 11 March 2014
Accepted 1 May 2014

(C) 2014 International Union of Crystallography All rights reserved

Crystallization and preliminary analysis of the NqrA and NqrC subunits of the Na^{+}-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae

Abstract

The Na^{+}-translocating NADH:ubiquinone oxidoreductase (Na^{+}-NQR) from Vibrio cholerae is a membrane protein complex consisting of six different subunits NqrA-NqrF. The major domains of the NqrA and NqrC subunits were heterologously expressed in Escherichia coli and crystallized. The structure of NqrA_{1-377} was solved in space groups $C 222_{1}$ and $P 2_{1}$ by SAD phasing and molecular replacement at 1.9 and $2.1 \AA$ resolution, respectively. NqrC devoid of the transmembrane helix was co-expressed with ApbE to insert the flavin mononucleotide group covalently attached to Thr225. The structure was determined by molecular replacement using apo-NqrC of Parabacteroides distasonis as search model at $1.8 \AA$ resolution.

1. Introduction

Vibrio cholerae is a Gram-negative bacterium that lives in brackish or sweet water environments. Strains of V. cholerae carrying pathogenicity islands infect the human gut and cause the disease cholera. V. cholerae maintains a Na^{+}gradient at its cytoplasmic membrane that drives substrate uptake, motility and efflux of antibiotics.

The Na^{+}motive force is generated by NADH:ubiquinone oxidoreductase ($\mathrm{Na}^{+}-\mathrm{NQR}$), a membrane protein complex of about 220 kDa coupling the exergonic oxidation of NADH to the transport of Na^{+}across the cytosolic membrane. It has been shown that the presence of $\mathrm{Na}^{+}-\mathrm{NQR}$ modulates virulence-factor expression in V. cholerae (Häse \& Mekalanos, 1999). Notably, $\mathrm{Na}^{+}-\mathrm{NQR}$ is a respiratory enzyme in many other pathogens such as Yersinia pestis (Black Death), Klebsiella pneumoniae (pneumonia) and Neisseria meningitis (meningitis).
$\mathrm{Na}^{+}-\mathrm{NQR}$ has a function analogous to mitochondrial complex I but exhibits a completely different architecture. It consists of six subunits $\mathrm{NqrA}-\mathrm{NqrF}$. $\mathrm{NqrB}, \mathrm{NqrD}$ and NqrE are integral membrane proteins, NqrC has been predicted to be anchored by two transmembrane helices (Duffy \& Barquera, 2006) and NqrF is anchored by a single transmembrane helix (Duffy \& Barquera, 2006; Türk et al., 2004), whereas NqrA is devoid of a membrane anchor and is tightly attached to the membrane-bound subunits (Duffy \& Barquera, 2006).

To date, there is no structural information available for $\mathrm{Na}^{+}-\mathrm{NQR}$ from V. cholerae. We have crystallized a major domain of the NqrF subunit (Tao et al., 2006) and we recently also succeeded in crystallization of the entire $\mathrm{Na}^{+}-\mathrm{NQR}$ complex (Casutt et al., 2010). Structures of an NqrF subdomain from Porphyromonas gingivalis (PDB entry 2r6h; Midwest Center for Structural Genomics, unpublished work) and of a soluble domain of NqrC from Parabacteroides distasonis (PDB entry 3lwx; Joint Center for Structural Genomics, unpublished work) have been deposited in the PDB. However, the covalently linked flavin mononucelotide (FMN) cofactor was lacking. The crystals of the NqrF subdomain diffracted well, allowing the determination of a high-resolution structure. Unfortunately, the crystals of the entire $\mathrm{Na}^{+}-\mathrm{NQR}$ complex diffracted to just beyond $4 \AA$ resolution. At this resolution many molecular details were still not resolved. We therefore aimed to complement our low-resolution analysis with high-resolution structures of further single subunits. Here, we report the crystallization of the major domains of NqrA and

NqrC. The structures of the subunits were determined by SAD phasing and molecular replacement, respectively.

2. Materials and methods

2.1. Cloning, protein expression and purification

2.1.1. Isolation and analysis of C-terminally truncated NqrA. Fulllength NqrA comprising residues 1-446 was expressed and purified as described previously (Nedielkov et al., 2013; Casutt et al., 2011) using immobilized metal-ion chromatography (IMAC) and size-exclusion chromatography. Although protease inhibitors had been added to the cell-free extracts, the protein eluting from IMAC showed two further bands at lower molecular masses of approximately 38 and 40 kDa , suggesting a C-terminal proteolytic truncation. A smaller fragment corresponding to the cleaved-off C-terminus was not observed. In order to identify the proteolysis product, NqrA and truncated NqrA were subjected to anion-exchange chromatography using a SOURCE 15Q column ($10 \times 50 \mathrm{~mm}$) connected to an ÄKTA chromatography system (GE Healthcare). The sample was dialyzed against $20 \mathrm{~m} M$ Tris- HCl pH 8.0 and applied onto the column equilibrated in the same buffer. Bound proteins were eluted in a linear gradient to $20 \mathrm{~m} M$ Tris- $\mathrm{HCl}, 1.0 \mathrm{M} \mathrm{NaCl} \mathrm{pH} 8.0$ and fractions were analyzed on SDS-PAGE. The cysteines of samples were blocked in SDS-PAGE sample buffer containing $125 \mathrm{~m} M$ iodoacetamide for 20 min at room temperature and the reaction was stopped by adding $70 \mathrm{~m} M$ DTT. Bands containing truncated NqrA were excised and subjected to mass-spectrometric analysis as described previously (Casutt et al., 2012). The analysis revealed two major fragments of NqrA comprising residues 2-370 and 2-377. Structure prediction (Kelley \& Sternberg, 2009) suggested that NqrA forms two domains: an Nterminal domain consisting of residues 1-378 and a short C-terminal domain consisting of residues 379-446. Since crystallization trials of full-length NqrA had not been successful, we decided to produce a Cterminally truncated variant of NqrA.
2.1.2. Cloning of NqrA_{1-377}. For expression of NqrA_{1-377} a synthetic cDNA with codons optimized for expression in Escherichia coli was obtained from a commercial supplier (GenScript). The cDNA was flanked with restriction sites for $N d e \mathrm{I}$ and XhoI at the 5^{\prime} and 3^{\prime} ends, respectively, and was cloned via the same sites into pET15 b (Novagen), yielding pET-15b-NqrA ${ }_{1-377}$. The resulting gene encodes for NqrA_{1-377} with an N -terminal thrombin cleavable hexahistidine tag. After cleavage with thrombin the protein has three additional residues, G-S-H, at the N-terminus.
2.1.3. Expression and purification of NqrA_{1-377}. For heterologous expression of NqrA_{1-377}, the plasmid pET-15b-NqrA ${ }_{1-377}$ was transformed into E. coli Tuner (DE3) cells (Novagen). Expression cultures for NqrA_{1-377} were grown in shaking culture in baffled flasks at $37^{\circ} \mathrm{C}$ in DYT supplemented with $50 \mathrm{~m} M \quad \mathrm{Na}_{2} \mathrm{HPO}_{4}, 0.2 \%$ glucose, $100 \mu \mathrm{~g} \mathrm{ml}^{-1}$ ampicillin until an $\mathrm{OD}_{600 \mathrm{~nm}}$ of 0.8 was reached. Expression was induced by the addition of $1 \mathrm{~m} M$ IPTG and the culture was further incubated for 5 h at $30^{\circ} \mathrm{C}$. Cells were harvested by centrifugation for 15 min at 8000 g . Typically, 10 g wet weight cells were suspended in 20 ml of ice-cold $50 \mathrm{~m} M$ sodium phosphate, $300 \mathrm{~m} M \mathrm{NaCl} \mathrm{pH} 8.0$, supplemented with approximately 2 mg DNAse I, $5 \mathrm{~m} M \mathrm{MgCl}_{2}$ and EDTA-free cOmplete protease inhibitor (Roche). The cells were lysed by two passages through a French pressure cell at 137 MPa . Cell debris was removed by centrifugation for 1 h at 30000 g and $4^{\circ} \mathrm{C}$. All subsequent chromatographic steps were carried out at $4^{\circ} \mathrm{C}$ on an FPLC system (GE Healthcare). The supernatant was diluted twofold with $50 \mathrm{~m} M$ sodium phosphate, $300 \mathrm{~m} M \mathrm{NaCl}, 5 \%$ glycerol, $30 \mathrm{~m} M$ imidazole pH 8.0 and loaded onto
an Ni Sepharose Fast Flow column $(10 \times 120 \mathrm{~mm})$ equilibrated in the same buffer. The column was washed with the same buffer until the absorption at 280 nm reached the baseline level and the bound protein was eluted with $50 \mathrm{~m} M$ sodium phosphate, $300 \mathrm{~m} M \mathrm{NaCl}, 5 \%$ glycerol, $250 \mathrm{~m} M$ imidazole pH 8.0. For cleavage of the $\mathrm{His}_{6} \operatorname{tag} 0.5 \mathrm{U}$ thrombin per milligram of NqrA and 2 mM CaCl 2 were added, followed by incubation at room temperature for 16 h . Uncleaved protein and the His_{6} tag were removed by passing the sample over an Ni Sepharose Fast Flow column. Prior to anion exchange on a SOURCE 15Q column ($10 \times 90 \mathrm{~mm}$), the sample was concentrated by ultrafiltration (30 kDa cutoff, Merck Millipore), diluted fivefold with $10 \mathrm{~m} M$ HEPES- $\mathrm{NaOH}, 5 \%$ glycerol pH 8.0 and loaded onto the column equilibrated in the same buffer. Bound protein was eluted in a linear gradient to $10 \mathrm{~m} M$ HEPES-NaOH, 5% glycerol, $300 \mathrm{~m} M$ NaCl pH 8.0. Fractions containing NqrA_{1-377} were combined and loaded onto a Superdex 75 (16/60) column (GE Healthcare) equilibrated in $10 \mathrm{~m} M$ HEPES-NaOH, 5% glycerol, $300 \mathrm{~m} M \mathrm{NaCl} \mathrm{pH} 8.0$ and eluted in the same buffer. The pure protein was concentrated by ultrafiltration (30 kDa cutoff, Merck Millipore) to $15 \mathrm{mg} \mathrm{ml}^{-1}$ and aliquots were flash-frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$.
2.1.4. Cloning, expression and purification of NqrC_{33-257}. For expression of NqrC devoid of the N-terminal transmembrane helix, a cDNA encoding residues $33-257$ was synthesized by a commercial supplier (GenScript). Furthermore, the cDNA encoded an N-terminal hexahistidine tag followed by a HR3C protease recognition site at the 5^{\prime} end. After cleavage the mature protein has four additional residues G-P-G-H at the N-terminus. The cDNA was flanked by NcoI and XhoI sites at the 5^{\prime} and 3^{\prime} ends, respectively, and was cloned into pET-15b using the same sites, yielding pET-15b-NqrC ${ }_{33-257}$. For coexpression of ApbE, which catalyzes the covalent linkage of FMN to Thr 225 of NqrC (Bertsova et al., 2013), the sequence of the apbE gene from V. cholerae (accession No. NC_009457.1; GeneID 5135954) was used to design a synthetic cDNA fragment lacking the leader sequence encoding amino-acid residues $51-367$. The cDNA was flanked at the 5^{\prime} end with an NcoI site and at the 3^{\prime} prime end with a cDNA encoding the residues for a HR3C protease-cleavable Strep-tag, two stop codons and a PacI restriction site. A silent mutation was introduced within the $a p b E^{\prime}$ sequence to eliminate an NcoI restriction site. The desired fragment was obtained by restriction with NcoI and PacI and cloned into pACYC-Duet-1 (Merck Millipore), to yield $\mathrm{pACYC}-\mathrm{apbE}^{\prime}$, which confers chloramphenicol resistance. Expression of ApbE^{\prime} containing a C-terminal Strep-tag was controlled by the lac promoter. All constructs were confirmed by sequencing.

Both plasmids were transformed into E. coli BL21(DE3) cells. Expression cultures for NqrC_{33-257} were grown in shaking culture in baffled flasks at $37^{\circ} \mathrm{C}$ in DYT supplemented with $50 \mathrm{~m} M \mathrm{NaHPO}_{4}$, 0.2% glucose, $100 \mu \mathrm{~g} \mathrm{ml}^{-1}$ ampicillin until an $\mathrm{OD}_{600 \mathrm{~nm}}$ of 1.0 was reached. Expression was induced by the addition of $0.5 \mathrm{~m} M$ IPTG and after 5 h at $37^{\circ} \mathrm{C}$ the cells were harvested by centrifugation at 8000 g . The cells were lysed using a French press and after centrifugation at 30000 g for 1 h the supernatant was diluted threefold with $50 \mathrm{~m} M$ sodium phosphate, $300 \mathrm{~m} M \mathrm{NaCl}, 5 \%$ glycerol, $10 \mathrm{~m} M$ imidazole pH 8.0 and loaded onto an Ni Sepharose Fast Flow column $(10 \times 120 \mathrm{~mm})$. The column was washed with $50 \mathrm{~m} M$ sodium phosphate, $300 \mathrm{~m} M \mathrm{NaCl}, 5 \%$ glycerol, $20 \mathrm{~m} M$ imidazole pH 8.0 until the absorption at 280 nm reached the baseline level and bound $\mathrm{His}_{6}{ }^{-}$ NqrC_{33-257} was eluted with $50 \mathrm{~m} M$ sodium phosphate, $300 \mathrm{~m} M \mathrm{NaCl}$, 5% glycerol, $250 \mathrm{~m} M$ imidazole pH 8.0. The His_{6} tag was cleaved by digestion with His_{6}-tagged PreScission protease (Basters et al., 2014) at $4^{\circ} \mathrm{C}$ for 14 h . The $\mathrm{His}_{6} \mathrm{tag}$, undigested protein and His_{6}-tagged PreScission protease were removed by passing the sample over an Ni

Sepharose Fast Flow column. The flowthrough containing NqrC_{33-257} was concentrated by ultrafiltration (10 kDa cutoff, Merck Millipore) and applied onto a Superdex $75(26 / 60)$ column equilibrated in $10 \mathrm{~m} M$ HEPES-NaOH, 5% glycerol, $300 \mathrm{~m} M \mathrm{NaCl} \mathrm{pH} 7.5$ and eluted with the same buffer. The pure protein was concentrated by ultrafiltration to $15 \mathrm{mg} \mathrm{ml}^{-1}$ and aliquots were flash-frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$.
NqrC_{33-257} expressed in the absence of ApbE yielded colourless, FMN-free protein that formed a dimer and a minor fraction of a monomeric species as judged from size-exclusion chromatography. Cytoplasmic co-expression of ApbE resulted in the covalent insertion of FMN. Size-exclusion chromatography yielded two peaks containing NqrC_{33-257}; about 80% of the NqrC_{33-257} eluted at a volume corresponding to monomeric protein, whereas about 20% eluted at a smaller volume corresponding to a dimer (Fig. 1a). Comparison of the ratios at $280 / 400 \mathrm{~nm}$ for both fractions revealed an

Figure 1
Molecular properties of $\mathrm{NqrC}_{33-257 \text {. (a) Analytical size-exclusion chromatogram of }}$ NqrC_{33-257} after the Ni Sepharose Fast Flow column. The absorption at 280 nm (black curve) and at 400 nm (red curve) is shown. The protein elutes in two peaks; the first small peak corresponds to approximately dimeric NqrC_{33-257} and the second major peak to monomeric NqrC_{33-257}. Elution volumes of marker proteins are indicated by arrows. The first peak exhibited a much lower ratio at $400 / 280 \mathrm{~nm}$ compared to the second major peak. (b) Absorption spectra of monomeric NqrC_{33} 257 (solid line) and dimeric NqrC_{33-257} (broken line). Monomeric NqrC_{33-257} exhibited an extinction coefficient $\varepsilon_{450 \mathrm{~nm}}=11400 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$, whereas an $\varepsilon_{450 \mathrm{~nm}}=$ $1700 M^{-1} \mathrm{~cm}^{-1}$ was determined for dimeric NqrC_{33-257}. Calculating the FMN content using the extinction coefficient $\varepsilon_{450 \mathrm{~nm}}=12500 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ of free FMN shows that the FMN content in the monomeric species is $>90 \%$, whereas the FMN content in the dimeric species is $\sim 14 \%$.
almost tenfold higher flavin content for monomeric NqrC_{33-257} than for the dimeric species. Absorption spectra of both samples and calculation of the extinction coefficient confirmed these data (Fig. 1b). The specific extinction coefficients at 450 nm were $\varepsilon_{450 \mathrm{~nm}}=$ $11400 M^{-1} \mathrm{~cm}^{-1}$ for monomeric NqrC_{33-257} and $1700 M^{-1} \mathrm{~cm}^{-1}$ for the dimeric fraction. Comparing these values with the extinction coefficients of free FMN $\varepsilon_{450 \mathrm{~nm}}=12500 M^{-1} \mathrm{~cm}^{-1}$ shows that the monomeric species of NqrC_{33-257} represents holo NqrC_{33-257}, whereas the multimeric species contains sub-stoichiometric amounts of FMN.

2.2. Protein crystallization

Initial crystallization trials for all proteins were performed using a Phoenix pipetting robot (Art Robbins Instruments) using the sittingdrop vapour-diffusion method with 96 -well plates. For each condition three different drops were set up by mixing 200 nl protein solution with 200 nl buffer, 200 nl protein solution with 300 nl buffer or 300 nl protein solution with 200 nl buffer and were equilibrated against 50μ l crystallization buffer. Protein concentration was varied between 5 and $15 \mathrm{mg} \mathrm{ml}^{-1}$. Crystallization trials were performed at 4 and $20^{\circ} \mathrm{C}$ using different commercial and homemade crystallization screens. Trials with full-length NqrA_{1-446} never yielded any crystals. We had observed that the C-terminus of NqrA was prone to proteolytic cleavage, indicating that this part of the protein might be rather flexible and therefore accessible to proteases. The presence of the flexible domain might also obstruct crystal formation, as observed for full-length NqrA_{1-446}. We therefore continued with trials using NqrA_{1-377}. The protein was thawed on ice and $15 \mathrm{~m} M$ DTT was added prior to crystallization. Crystals were observed after 4-6 d in two similar conditions. Small, elongated, rhomboid-shaped crystals of approximate dimensions $20 \times 20 \times 60 \mu \mathrm{~m}$ were detected in drops set up at $20^{\circ} \mathrm{C}$ with 200 nl protein solution at $10 \mathrm{mg} \mathrm{ml}^{-1}$ and 200 nl $0.1 M$ HEPES-NaOH pH 7.5, 25\% PEG 3350, $0.2 M \mathrm{NaCl}$ (Fig. 2a). In contrast, cuboid crystals were detected with 0.1 M Tris- HCl pH $8.5,25 \%$ PEG $3350,0.2 M \mathrm{Li}_{2} \mathrm{SO}_{4}$ (Fig. 2b) as the crystallization buffer. In refined screens the pH , the PEG concentration and the inorganic salt, and the type of crystallization setup were varied. However, crystals were only obtained in conditions that were very similar to the initial conditions and only in 96 -well plates, not in 24well sitting-drop or hanging-drop plates. By increasing the drop size to 800 nl cuboid crystals grew to a maximum size of $50 \times 100 \times$ $100 \mu \mathrm{~m}$ at a pH between 7.5 and $8.5,24-26 \%$ PEG $3350,0.2 \mathrm{M}$ $\mathrm{Li}_{2} \mathrm{SO}_{4}$. Crystals were mounted in nylon loops (Hampton Research) and flash-cooled in liquid nitrogen without any further addition.

In crystallization trials using apo NqrC_{33-257}, both the monomeric and the dimeric fraction yielded no diffracting crystals. Initial screens using monomeric holo NqrC_{33-257} also yielded no crystals when the protein was still in the same buffer as eluted from size-exclusion chromatography. However, crystallization was successful when the buffer was exchanged to $10 \mathrm{~m} M$ Tris pH 8.0 by passing the sample over an NAP-5 column (GE Healthcare) equilibrated in the same buffer. Small yellow crystals of approximately $5 \times 5 \times 20 \mu \mathrm{~m}$ in size were obtained after 7 d in drops set up with 200 nl protein solution and $200 \mathrm{nl} 0.1 M$ Tris $\mathrm{pH} 8.5,12.5 \%$ PEG 1000, 12.5% PEG 3350, 12.5% MPD, $0.03 \mathrm{M} \mathrm{NaF}, 0.03 \mathrm{M} \mathrm{aBr}, 0.03 \mathrm{M}$ NaI. In further trials, $2 \mu \mathrm{l}$ protein solution was mixed with $2 \mu \mathrm{l}$ buffer and equilibrated against $500 \mu \mathrm{l}$ buffer in hanging-drop trials in EasyXtal 15-well plates (Qiagen) or sitting-drop trials in Cryschem M plates (Hampton Research). Varying the pH between 8 and 9 and the PEG 1000/PEG 3350/MPD concentrations between 9 and 15%, very thin plate-like crystals of NqrC_{33-257} with dimensions $300 \times 400 \times 5 \mu \mathrm{~m}$ were obtained (Fig. 2c). The fragile crystals were mounted in nylon loops
(Hampton Research) and directly flash-cooled in liquid nitrogen. No further addition was required for cryoprotection.

2.3. Data collection, processing and structure solution

Data collection was carried out on beamlines X06SA and X06DA at the Swiss Light Source (Villigen, Switzerland) equipped with a MAR 225 CCD, PILATUS 6 M or PILATUS 2M detector (Dectris). The diffraction data were processed with the $X D S$ package (Kabsch, 2010). Despite their small size (Fig. 2a), the crystals of NqrA_{1-377} diffracted well using a small beam size of $20 \times 20 \mu \mathrm{~m}$ at the micro-

Figure 2
Crystals of NqrA_{1-377} and $\mathrm{NqrC}_{33-257 .}$. a Crystal form 1 of $\mathrm{NqrA}_{1-377 .}$. b) Crystal form 2 of $\mathrm{NqrA}_{1-377 .}$ (c) Crystal of holo NqrC_{33-257}. The scale bar in each picture corresponds to $50 \mu \mathrm{~m}$.

Table 1
Data-collection and refinement statistics for NqrA_{1-377}.
Values in parentheses are for the outer shell.

Crystal	Native 1	Native 2	$\mathrm{K}_{2} \mathrm{PtCl}_{4}$ derivative
X-ray source	X06SA MD2, SLS	X06DA, SLS	X06DA, SLS
Wavelength (\AA)	1.0	1.03	1.06
Detector	MAR 225 CCD	Dectris PILATUS 2M	Dectris PILATUS 2M
Total rotation range (${ }^{\circ}$)	200	360	1200
Resolution range (A)	50-2.1 (2.2-2.1)	50-1.9 (2.0-1.9)	50-2.4 (2.4-2.2)
Space group	$P 2_{1}$	$C 222_{1}$	$C 222_{1}$
Unit-cell parameters $\left(\AA,{ }^{\circ}\right)$	$\begin{aligned} & a=56.2, b=81.7 \\ & \quad c=85.1, \beta=92.7^{\circ} \end{aligned}$	$\begin{gathered} a=78.1, b=83.5, \\ c=101.7 \end{gathered}$	$\begin{gathered} a=78.7, b=83.6, \\ c=101.4 \end{gathered}$
No. of reflections	188843 (24607)	344684 (43713)	748132 (158837)
No. of unique reflections	44981 (5832)	26419 (3683)	17305 (3893)
Multiplicity	7.7 (4.2)	13.0 (11.8)	43.2 (40.8)
$\langle I / \sigma(I)\rangle$	8.2 (1.3)	27.4 (4.4)	22.8 (1.8)
Completeness (\%)	99.9 (99.9)	99.5 (99.1)	99.9 (99.7)
$R_{\text {merge }} \dagger$ (\%)	12.9 (126.6)	9.6 (189.2)	18.3 (275)
$R_{\text {meas }} \ddagger(\%)$	14.8 (144.9)	10.0 (197.6)	18.5 (278)
CC*§	99.7 (56.5)	99.9 (58.4)	100.0 (78.8)
No. of molecules per asymmetric unit	2	1	1
Matthews coefficient $\left(\AA^{3} \mathrm{Da}^{-1}\right)$	2.41	2.05	2.05
Solvent content (\%)	49.1	40.1	40.1
$R_{\text {work }}$ (\%)	20.1 (34.5)	$17.0 \text { (29.0) }$	
$R_{\text {free }}(\%)$	23.5 (37.6)	19.6 (33.5)	
Average B factors $\left(\AA^{2}\right)$ from phenix.refine			
All atoms	48.7	39.8	
Protein	48.9	39.3	
Solvent	45.0	42.4	
$\begin{aligned} & \dagger R_{\text {merge }}= \\ & \sum_{h k l}\{N(h k l) /[N(h k l) \\ & \left.{ }_{2} /\left(1+\mathrm{CC}_{1 / 2}\right)\right]^{1 / 2}(\text { Karp } \end{aligned}$	$\begin{aligned} & \sum_{h k l} \sum_{i} \mid I_{i}(h k l)-\langle I \\ & 1]\}^{1 / 2} \sum_{i} \mid I_{i}(h k l)-\langle I(\\ & \text { is \& Diederichs, 2012) } \end{aligned}$	$\begin{aligned} & k l)\rangle \mid / \sum_{h k l} \sum_{i} I_{i}(h k l) \\ & k l)\rangle \mid / \sum_{h k l} \sum_{i} I_{i}(h k l) . \end{aligned}$	$\begin{aligned} & \ddagger R_{\text {meas }}= \\ & \S \mathrm{CC}^{*}=\left[2 \mathrm{CC}_{1 /}=\right. \end{aligned}$

focus setup of X06SA (Fig. 3a). The elongated rhomboid crystals belonged to space group $P 2_{1}$, with unit-cell parameters $a=56.2, b=$ 81.7, $c=85.1 \AA, \alpha=\gamma=90, \beta=92.7^{\circ}$, and diffracted to $2.1 \AA$ resolution (Table 1) applying the $\mathrm{CC}_{1 / 2}$ criterion as defined by Karplus \& Diederichs (2012). The cuboid crystals of NqrA_{1-377} belonged to space group $C 222_{1}$, with unit-cell parameters $a=78.1, b=83.5, c=$ $101.7 \AA, \alpha=\beta=\gamma=90^{\circ}$, and diffracted to $1.9 \AA$ A resolution (Table 1). Since no structure homologous to NqrA has yet been reported, phase determination by molecular replacement was not possible. Therefore, we prepared heavy-atom soaks for MIRAS or SAD phasing. We selected a total of nine different Pt, Hg and Au salts for soaking experiments. In order to shorten the soaking time (10 min), we used rather high concentrations of heavy atoms ranging between 40 and $200 \mathrm{~m} M$. A derivative with $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ still diffracted to $2.2 \AA$ resolution and the data exhibited a good anomalous signal. Several data sets collecting wedges of 6° with inverse-beam orientation with a total φ of 1200° were recorded, integrated with XDS (Kabsch, 2010) and scaled using XSCALE (Kabsch, 2010). The heavy-atom substructure was determined with HySS (Grosse-Kunstleve \& Adams, 2003), phases were determined using the Phaser (McCoy et al., 2007) SAD module and an initial model was built using RESOLVE (Terwilliger, 2004). The AutoSol pipeline from the PHENIX package (Adams et al., 2010) was used to run the programs. After solvent flattening with Parrot (Zhang et al., 1997) the initial model was extended with Buccaneer (Cowtan, 2006) and refined against the native data. The model was used to determine the structure of NqrA_{1-377} in the crystals of space group $P 2_{1}$ by molecular replacement using Phaser (McCoy et al., 2007).

The very thin NqrC_{33-257} crystals showed highly anisotropic diffraction dependent on the orientation of the crystals in the X-ray beam. When the X-ray beam crossed the short section of the crystals, a clear diffraction pattern with spots up to a resolution of $1.7 \AA$ was observed (Fig. 3b). However, diffraction of the crystals oriented with the long side to the X-ray beam resulted in poor diffraction with smeared spots and a maximum resolution of $2.5 \AA$ (Fig. 3c). The crystals belonged to space group $P 2_{1}$, with unit-cell parameters $a=$ 46.7, $b=41.7, c=61.4 \AA, \alpha=\gamma=90, \beta=107.7^{\circ}$. For molecularreplacement trials a polyserine homology model of NqrC_{33-257} from V. cholerae was built using the structure of NqrC from Parabacteroides distasonis (PDB entry 3lwx) as template with

MODELLER (Eswar et al., 2006) and MOLEMAN (Kleywegt et al., 2001). Molecular-replacement trials were performed using Phaser and the Z-score of the translation function (TFZ) was 6.5 with a final LLG of 261 indicating a solution. However, refinement trials using phenix.refine or REFMAC5 (Murshudov et al., 2011) with different refinement strategies yielded an $R_{\text {work }}$ of 46% and an $R_{\text {free }}$ of 55%. We presumed that either the molecular-replacement solution is not correct or that the observed anisotropic diffraction contributes to the high R factors in refinement.

In an initial trial, we reintegrated only those images that showed well defined spots. This data set showed lower completeness but lower $R_{\text {merge }}$ and $R_{\text {meas }}$ (Table 2). Using the same strategy in Phaser the solution was not as clear as in the previous runs, with $\mathrm{TFZ}=6.3$

Figure 3
Diffraction pattern of crystals of NqrA_{1-377} and NqrC_{33-257}. (a) Diffraction pattern of crystals of NqrA_{1-377} belonging to space group $C 222_{1}$. The resolution at the image border is $2.0 \AA$. (b) Diffraction pattern NqrC_{33-257} with the short side oriented to the beam showing well defined spots to $1.7 \AA$ resolution. (c) Diffraction pattern of the same crystal of NqrC_{33-257} rotated 90° compared with the orientation in (b). When the beam crosses the long side of the crystal smeared spots and a lower diffraction limit were observed.

Table 2
Data-collection and refinement statistics for NqrC_{33-257}.
Values in parentheses are for the outer shell.

Crystal	Native	Native, truncated data
X-ray source	X06SA HR, SLS	
Wavelength (A)	1.0	
Detector	Dectris PILATUS 6M	
Total rotation range (${ }^{\circ}$)	720	304
Resolution range (\AA)	50-1.7 (1.8-1.7)	50-1.7 (1.8-1.7)
Space group	$P 2_{1}$	
Unit-cell parameters (\AA°, ${ }^{\circ}$)	$\begin{aligned} & a=46.7, b=41.7, \\ & \quad c=61.4, \beta=107.7 \end{aligned}$	
No. of reflections	287190 (24799)	136521 (18406)
No. of unique reflections	25409 (3971)	22276 (3584)
Multiplicity	11.3 (6.2)	6.1 (5.1)
$\langle I / \sigma(I)\rangle$	10.3 (1.2)	11.4 (1.2)
Completeness (\%)	99.9 (99.8)	88.1 (90.8)
$R_{\text {merge }}$ (\%)	15.5 (182)	9.4 (134)
$R_{\text {meas }}$ (\%)	16.2 (198)	10.2 (149)
$\mathrm{CC}_{1 / 2}$	99.8 (74.1)	99.8 (53.2)
No. of molecules per asymmetric unit	1	
Mathews coefficient ($\AA^{3} \mathrm{Da}^{-1}$)	2.34	
Solvent content (\%)	47.5	
$R_{\text {work }}$ (\%)	18.4 (37.5)	
$R_{\text {free }}$ (\%)	20.9 (39.6)	
Average B factors $\left(\AA^{2}\right)$		
All atoms	39.2	
Protein	38.8	
Solvent	43.6	

We thank the staff of beamlines X06SA and X06DA at the SLS for excellent support. This work was supported by contract research 'Methoden in den Lebenswissenschaften' of the Baden-Württemberg Stiftung P-LS-Meth/4 (to HMM, JS and GF) and by Deutsche Forschungsgemeinschaft grant FR 1321/3-1 (to JS) and grant FR 1488/3-2 (to GF). HMM and GF would like to acknowledge funding by the Young Scholar Fund of the University of Konstanz.

References

Adams, P. D. et al. (2010). Acta Cryst. D66, 213-221.

Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J., Moriarty, N. W., Mustyakimov, M., Terwilliger, T. C., Urzhumtsev, A., Zwart, P. H. \& Adams, P. D. (2012). Acta Cryst. D68, 352-367.
Basters, A., Geurink, P. P., Oualid, F. E., Ketscher, L., Casutt, M. S., Krause, E., Ovaa, H., Knobeloch, K. P. \& Fritz, G. (2014). FEBS J. 281, 1918-1928.
Bertsova, Y. V., Fadeeva, M. S., Kostyrko, V. A., Serebryakova, M. V., Baykov, A. A. \& Bogachev, A. V. (2013). J. Biol. Chem. 288, 14276-14286.

Casutt, M. S., Nedielkov, R., Wendelspiess, S., Vossler, S., Gerken, U., Murai, M., Miyoshi, H., Möller, H. M. \& Steuber, J. (2011). J. Biol. Chem. 286, 40075-40082.
Casutt, M. S., Schlosser, A., Buckel, W. \& Steuber, J. (2012). Biochim. Biophys. Acta, 1817, 1817-1822.
Casutt, M. S., Wendelspiess, S., Steuber, J. \& Fritz, G. (2010). Acta Cryst. F66, 1677-1679.
Cowtan, K. (2006). Acta Cryst. D62, 1002-1011.
DiMaio, F., Echols, N., Headd, J. J., Terwilliger, T. C., Adams, P. D. \& Baker, D. (2013). Nature Methods, 10, 1102-1104.

Duffy, E. B. \& Barquera, B. (2006). J. Bacteriol. 188, 8343-8351.
Emsley, P. \& Cowtan, K. (2004). Acta Cryst. D60, 2126-2132.
Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M.-Y., Pieper, U. \& Sali, A. (2006). Curr. Protoc. Bioinformatics, Unit 5.6, doi:10.1002/0471250953.bi0506s15.

Grosse-Kunstleve, R. W. \& Adams, P. D. (2003). Acta Cryst. D59, 1966-1973.
Häse, C. C. \& Mekalanos, J. J. (1999). Proc. Natl Acad. Sci. USA, 96, $3183-$ 3187.

Kabsch, W. (2010). Acta Cryst. D66, 125-132.
Karplus, P. A. \& Diederichs, K. (2012). Science, 336, 1030-1033.
Kelley, L. A. \& Sternberg, M. J. (2009). Nature Protoc. 4, 363-371.
Kleywegt, G. J., Zou, J. Y., Kjeldgaard, M. \& Jones, T. A. (2001). International Tables for Crystallography, Vol. F, edited by M. G. Rossmann \& E. Arnold, pp. 353-356, 366-367. Dordrecht: Kluwer Academic Publishers.
Langer, G., Cohen, S. X., Lamzin, V. S. \& Perrakis, A. (2008). Nature Protoc. 3, 1171-1179.
McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. \& Read, R. J. (2007). J. Appl. Cryst. 40, 658-674.

Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F. \& Vagin, A. A. (2011). Acta Cryst. D67, 355-367.
Nedielkov, R., Steffen, W., Steuber, J. \& Möller, H. M. (2013). J. Biol. Chem. 288, 30597-30606.
Tao, M., Türk, K., Diez, J., Grütter, M. G., Fritz, G. \& Steuber, J. (2006). Acta Cryst. F62, 110-112.
Terwilliger, T. (2004). J. Synchrotron Rad. 11, 49-52.
Türk, K., Puhar, A., Neese, F., Bill, E., Fritz, G. \& Steuber, J. (2004). J. Biol. Chem. 279, 21349-21355.
Zhang, K. Y. J., Cowtan, K. \& Main, P. (1997). Methods Enzymol. 277, 53-64.

