Supporting Information
 Structural Insights into DNA Replication Without Hydrogen-Bonds

Karin Betz, ${ }^{\dagger, \delta}$ Denis A. Malyshev, ${ }_{*}^{\ddagger, \delta}$ Thomas Lavergne, ${ }^{\ddagger}$ Wolfram Welte, ${ }^{\dagger}$ Kay Diederichs, ${ }^{\dagger}$ Floyd E. Romesberg,,${ }^{*}$, and Andreas Marx ${ }^{*, \dagger}$
${ }^{\dagger}$ Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany, and ${ }^{\dagger}$ Department of Chemistry, The Scripps Research Institute, La Jolla, California, 92037 USA
*Corresponding Author: floyd@scripps.edu, *andreas.marx@uni-konstanz.de
${ }^{\S}$ These authors contributed equally.

Table of Contents

Sequences of the oligonucleotides: S2
Crystallization conditions S2
Figure S1. S3
Figure S2. S4
Figure S3. S5
Figure S4. S6
Table S1. Summary of data collection and refinement statistics S7
References S9

Sequences of the oligonucleotides:

template-I1-5SICS, $\quad 5^{\prime}$-d(AAC 5SICS GGC GCC GTG GTC)-3’
template-E1-NaM, 5 '-d(AG NaM GCG CCG TGG T)-3'
template-E2-NaM, 5^{\prime}-d(TTC NaM GCG CCG TGG C)-3'
template-E2-5SICS, ${ }^{\prime}$ '-d(TTC 5SICS GCG CCG TGG C)-3'
template-E3-NaM, 5’-d(TTG NaM GCG CCG TGG T)-3’
primer-I1:
primer-E1:
5'-d(GAC CAC GGC GC)-3'
primer-E2: $\quad 5^{\prime}$ 'd(GCC ACG GCG C)-3'
primer-E2-5SICS: $\quad 5^{\prime}$-d(GCC ACG GCG C 5SICS)-3'

Crystallization conditions

KTQ $_{\text {dssics: }}$: The binary complex KTQ $_{\text {dssics }}$ was obtained by incubating purified KlenTaq with primer-I1/template-I1-5SICS and ddCTP in a molar ratio of 1:1.2:5 in the presence of 20 $\mathrm{mM} \mathrm{MgCl}{ }_{2}$. The final concentration of KlenTaq was $5 \mathrm{mg} / \mathrm{ml}$. Setups were made using the sitting drop vapor diffusion method by mixing protein/primer-template/ddCTP and reservoir solution in a $1: 1$ ratio. Crystals were obtained with the following reservoir solution: 20% PEG 8000, 0.1 M Tris $\mathrm{pH} 8.0,0.2 \mathrm{M}$ magnesium formate, 20% glycerol. The N-terminal amino acid 293 and the loop between residues 647 and 659 were not modeled due to disorder.

KTQ $_{\text {dsSICs-dNaMTP: }}$: The ternary complex $\mathrm{KTQ}_{\text {dSSICs-dNaMTP }}$ was obtained by incubating KlenTaq with primer-I1/template-I1-5SICS and ddCTP in a molar ratio of 1:1.2:2 in the presence of 20 mM MgCl . The final concentration of KlenTaq was $6.5 \mathrm{mg} / \mathrm{ml}$. Setups were made using the sitting drop vapor diffusion method by mixing protein/primer-template/ddCTP and reservoir solution in a $1: 1$ ratio. Crystals were obtained with the following reservoir solution: 15% PEG 8000 , 0.1 M Tris $\mathrm{pH} 8.0,0.2 \mathrm{M}$ magnesium formate. For soaking, crystals were transferred into a drop containing the same amounts of protein/primer-template/ddCTP and reservoir solution and 2 mM dNaMTP . Crystals were soaked for 10 days. Before cryo cooling, crystals were consecutively soaked in reservoir solutions containing 10% and 20% glycerol.

KTQ(E1) $)_{\text {dNaM-dssics: }}$: The binary complex KTQ(E1) ${ }_{\mathrm{dNaM}-\mathrm{dSSICs}}$ was obtained by incubating KlenTaq with primer-E1/template-E1-NaM and d5SICSTP in a molar ratio of 1:1.2:5 in the presence of $20 \mathrm{mM} \mathrm{MgCl}{ }_{2}$. Setups were made using the sitting drop vapor diffusion method by mixing KlenTaq/primer-template/d5SICSTP and reservoir solution in a $1: 1$ ratio. The final concentration of KlenTaq was $6.2 \mathrm{mg} / \mathrm{ml}$. Crystals were obtained with the following reservoir solution: 0.2 M ammonium sulfate, 0.1 M MES pH 6.5, 28% PEG 5000MME. Crystals were cryoprotected in reservoir solution containing 20% glycerol before freezing.

KTQ(E2) dNaM-dssics: The binary complex KTQ(E2) ${ }_{\mathrm{dNaM}-\mathrm{dSSICs}}$ was obtained by incubating KlenTaq with primer-E2-5SICS/template-E2-NaM in a molar ratio of 1:1.2 in the presence of 20 $\mathrm{mM} \mathrm{MgCl}_{2}$. Setups were made using the sitting drop vapor diffusion method by mixing KlenTaq/primer-template and reservoir solution in a $1: 1$ ratio. The final concentration of KlenTaq was $6.2 \mathrm{mg} / \mathrm{ml}$. Crystals were obtained with the following reservoir solution: 0.2 M ammonium sulfate, 0.1 M MES pH 6.5, 30\% PEG 5000MME.

KTQ(E2) dsSICs-dNaM : The binary complex KTQ(E2) ${ }_{\text {dSSICS-dNaM }}$ was obtained by incubating KlenTaq with primer-E2/template-E2-5SICS and dNaMTP in a molar ratio of 1:1.2:5 in the presence of 20 mM MgCl . Setups were made using the sitting drop vapor diffusion method mixing KlenTaq/primer-template/dNaMTP and reservoir in a 1:1. The final concentration of

KlenTaq was $6.2 \mathrm{mg} / \mathrm{ml}$. Crystals were obtained with the following reservoir solution: 0.2 M ammonium sulfate, 0.1 M MES pH 6.5, 30\% PEG 5000MME and 20\% glycerol.

KTQ(E3) $)_{\text {dNaM-dsSICs: }}$: The binary complex KTQ(E3) $)_{d N a M-d 5 S I C S}$ was obtained by incubating KlenTaq with primer-E1/template-E3-NaM and d5SICSTP in a molar ratio of 1:1.5:8 in the presence of $20 \mathrm{mM} \mathrm{MgCl}{ }_{2}$. Setups were made using the hanging drop vapor diffusion method mixing KlenTaq/primer-template/d5SICSTP and reservoir in a 1:1 ratio. The final concentration of KlenTaq was $6.2 \mathrm{mg} / \mathrm{ml}$. Crystals were obtained with the following reservoir solution: 1.2 M lithium sulfate, 2% PEG 1000, 50 mM HEPES pH 7.5.

Figure S1.

Comparison of the templating nucleotide and 5' single-stranded template overhang in $\mathrm{KTQ}_{\mathrm{d} 5 \text { SICs }}$ (turquoise), $\mathrm{KTQ}_{\mathrm{dG}}$ (grey) and $\mathrm{KTQ}_{\mathrm{dNaM}}$ (yellow). (A) d5SICS and dG are positioned at a similar extrahelical position and the O-helix is in an open conformation. (B) The 5' single-stranded template overhang in $\mathrm{KTQ}_{\mathrm{dNaM}}$ is rotated towards the primer/template duplex and dA $\mathrm{d}_{\mathrm{n}+1}$ and $\mathrm{dA}_{\mathrm{n}+2}$ stack on the last base pair. The O-helix is rotated towards the 5 , single stranded template overhang.

Figure S2.
Comparison of $\mathrm{KTQ}_{\text {dSSICS-dNamTP }}$ with open, closed, and partially closed polymerase structures, respectively. The templating nucleotide, bound triphosphate, and Tyr671 are shown as sticks, the O-helix is shown as ribbon, and the base pair in the post-insertion site is shown as lines. (A) Superposition of KTQ ${ }_{\mathrm{d} 5 \text { SICs-dNaMTP }}$ with $\mathrm{KTQ}_{\mathrm{dsSICs}}$. Tyr671 stacks on top of the last base pair in both structures. (B) Superposition of KTQ ${ }_{\mathrm{dsSICS}}$ dNamTP with $\mathrm{KTQ}_{\mathrm{dNaM}-\mathrm{d5SICSTP}}$ (PDB ID: 3SV3). In the closed structure the templating nucleotide is moved inwards and displaces Tyr671. (C) Superposition of KTQ ${ }_{\text {dSSICS-dNaMTP }}$ with KTQ in complex with an AP site in the template and ddATP bound at the O-helix (PDB ID: 3LWL). ${ }^{1}$ Both complexes are partially closed and Y671 is in the templating position. (D) Superposition of $\mathrm{KTQ}_{\mathrm{d} 5 \text { SICS-dNamTP }}$ with the mismatch dGddTTP complex of Bacillus Fragment (BF) (PDB ID: 3HP6). ${ }^{2}$ Both complexes are partially closed but in $\mathrm{BF}_{\mathrm{dG} \text {-ddTTP }} \mathrm{Y} 671$ is displaced by the templating dG.

Figure S3.
Interaction networks near the intercalating base pair: (A,D) KTQ(E1) $)_{\text {dNaM-dsSICs, }}$
 3SZ2). Protein side chains packing or hydrogen-bonding with the unnatural base pair in the postinsertion site are shown as sticks and are labeled. Hydrogen-bonds are shown as black dashes. Watson-Crick hydrogen bonds in the natural dC-ddG pair are shown in brown.

Figure S4.
Interaction of the 5^{\prime}, single stranded dG_{n} template nucleotide and the primer terminus in $\mathrm{KTQ}(\mathrm{E} 1)_{\mathrm{dNaM}-\mathrm{d} 5 \mathrm{SICS}}$ and $\mathrm{KTQ}(\mathrm{E} 3)_{\mathrm{dNaM}-\mathrm{d} 5 \mathrm{SICs}}$.

Table S1. Summary of data collection and refinement statistics

	$\mathrm{KTQ}_{\text {dSSICS }}$	$\mathrm{KTQ}_{\text {dSSICS-dNaMTP }}$	KTQ(E1) dNaM-dSSICs
PDB ID	4 CCH	4C8K	4C8L
Data collection			
Wavelength (\AA)	1.0000	0.99987	1.0000
Space group	P3 21	P3, 21	$\mathrm{C} 222{ }_{1}$
Cell dimensions			
$a, b, c(\AA)$	114.3, 114.3, 91.6	115.0, 115.0, 91.0	65.6, 100.5, 204.3
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 90, 120	90, 90, 120	90, 90, 90
Resolution (\AA) ${ }^{\text {a }}$	49.5-2.55 (2.7-2.55)*	48.6-2.16 (2.29-2.16)*	48.8-1.70 (1.80-1.70)*
Total reflections	205511 (25923)	227942 (14630)	492762 (76284)
Unique reflections	22906 (3650)	34375(3094)	74923 (11845)
$\mathrm{R}_{\text {meas }}(\%)^{b}$	20.4 (144.2)	9.5 (217.4)	10.6 (275.8)
$I / \sigma I$	9.16 (0.65)	14.44(0.47)	11.57 (0.85)
Completeness (\%)	99.9 (99.7)	91.1 (51.2)	99.7 (98.6)
Redundancy	9.0 (7.1)	6.6 (4.7)	6.6 (6.4)
$\mathrm{CC}_{1 / 2}{ }^{1}$ (\%)	99.2 (52.3)	99.8 (47.8)	99.9 (49.2)
Refinement			
Resolution (\AA)	43.5-2.55	48.6-2.17	48.4-1.70
No. reflections	43559	33357	74501
$\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}$	20.7/26.1	18.1/22.1	18.9/21.4
Coordinate error (A$)^{c}$	0.42	0.25	0.37
No. atoms			
Protein	8458	8650	8698
DNA/triphosphate	795	826/49	772
Water	116	138	274
B-factors			
Protein	66.8	56.6	51.0
DNA/triphosphate	52.0	50.3/77.4	50.6
Water	38.3	45.6	43.4
R.m.s deviations			
Bond lengths (\AA)	0.005	0.007	0.011
Bond angles (${ }^{\circ}$)	0.770	0.870	1.239
Ramachandran ${ }^{\text {d }}$ (\%)			
Favored	95.04	97.77	97.23
Allowed	4.58	2.04	2.77
Outlier	0.38	0.19	0.00

Table S1, continued.

	KTQ(E2) ${ }_{\text {dNaM-dssics }}$	KTQ(E2) dSSICS - dNaM $^{\text {den }}$	KTQ(E3) ${ }_{\text {dNaM-dSSICS }}$
PDB ID	$4 \mathrm{C8O}$	4C8M	4C8N
Data collection			
Wavelength (\AA)	1.00001	1.0000	0.97793
Space group	C222 ${ }_{1}$	C222 ${ }_{1}$	C 2221
Cell dimensions			
$a, b, c(\AA)$	64.8, 99.2, 203.6	65.4, 101.5, 204.5	65.6,101.1, 204.3
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 90, 90	90, 90, 90	90, 90, 90
Resolution (A$)^{a}$	48.2-1.75 (1.86-1.75)*	49.2-1.57 (1.66-1.57)*	49.1-1.88 (1.99-1.88)*
Total reflections	439052 (70744)	577762 (53959)	361542 (48980)
Unique reflections	66214 (10539)	94841 (14820)	55373 (8568)
$\mathrm{R}_{\text {meas }}(\%)^{b}$	6.5 (216.4)	6.2 (155.1)	13.1 (200.5)
I/ σI	17.73 (0.99)	13.48 (0.78)	9.1 (0.80)
Completeness (\%)	99.6 (99.2)	99.5 (97.1)	99.4 (96.6)
Redundancy	6.6 (6.7)	6.1 (3.6)	6.5 (5.7)
$\mathrm{CC}_{1 / 2}{ }^{3}$ (\%)	100.0 (52.7)	99.9 (53.1)	99.8 (47.6)
Refinement			
Resolution (\AA)	47.9-1.75	49.3-1.57	49.1-1.88
No. reflections	66155	94768	55305
$\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}$	18.5/21.2	17.9/20.7	19.6/23.2
Coordinate error ($\AA \mathrm{A}^{\text {c }}$	0.28	0.28	0.34
No. atoms			
Protein	8680	8728	8657
DNA	739	770	774
Water	230	338	203
B-factors			
Protein	57.7	49.0	51.7
DNA	71.5	64.9	50.0
Water	49.3	46.2	43.5
R.m.s deviations			
Bond lengths (\AA)	0.005	0.011	0.007
Bond angles (${ }^{\circ}$)	0.964	1.283	1.062
Ramachandran ${ }^{d}$ (\%)			
Favored	97.97	98.35	98.14
Allowed	1.84	1.28	1.48
Outlier	0.18	0.37	0.37

[^0]
References

(1) Obeid, S.; Blattner, N.; Kranaster, R.; Schnur, A.; Diederichs, K.; Welte, W.; Marx, A. EMBO J. 2010, 29, 1738-1747.
(2) Wu, E. Y.; Beese, L. S. J. Biol. Chem. 2011, 286, 19758-19767.
(3) Karplus, P. A.; Diederichs, K. Science 2012, 336, 1030-1033.
(4) Diederichs, K.; Karplus, P. A. Nat. Struct. Biol. 1997, 4, 269-275.
(5) Adams, P. D., et al. Acta Crystallogr., Sect.D Biol. Crystallogr. 2010, 66, 213-221.
(6) Davis, I. W.; Leaver-Fay, A.; Chen, V. B.; Block, J. N.; Kapral, G. J.; Wang, X.; Murray, L. W.; Arendall, W. B., 3rd; Snoeyink, J.; Richardson, J. S.; Richardson, D. C. Nucleic Acids Res. 2007, 35, W375-383.

[^0]: * Numbers in brackets refer to the highest resolution shell.
 ${ }^{a}$ Resolution value of the structures $4 \mathrm{CCH}, 4 \mathrm{C} 8 \mathrm{~K}, 4 \mathrm{C} 8 \mathrm{~L}, 4 \mathrm{C} 8 \mathrm{O}, 4 \mathrm{C} 8 \mathrm{M}$ and 4 C 8 N at which $\mathrm{I} / \sigma=2$ is $2.90 \AA, 2.28 \AA, 1.85 \AA, 1.90 \AA, 1.70 \AA$ and $2.05 \AA$, respectively.
 ${ }^{b}$ for definition of $\mathrm{R}_{\text {meas }}$, see Diederichs \& Karplus, 1997^{4}
 ${ }^{c}$ maximum likelihood based (as determined by PHENIX ${ }^{5}$)
 ${ }^{d}$ as determined by MolProbity ${ }^{6}$

