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Abstract 

An artificial neural network (NN) was trained to predict the topology of bacterial outer membrane (OM) P-strand 
proteins. Specifically, the NN predicts the z-coordinate of C a  atoms in a coordinate frame with the outer membrane in 
the xy-plane, such that low z-values indicate periplasmic turns, medium z-values indicate transmembrane P-strands, and 
high z-values indicate extracellular loops. To obtain a training set, seven OM proteins (porins) with structures known 
to high resolution were aligned with their pores along the z-axis. The relationship between C a  z-values and topology 
was thereby established. To predict the topology of other OM proteins, all seven porins were used for the training set. 
Z-values (topologies) were predicted for  two porins with hitherto unknown structure and for OM proteins not belonging 
to the porin family, all with insignificant sequence homology to the training set.  The results of topology prediction 
compare favorably with experimental topology data. 

Keywords: beta-strand prediction; cross-validation; neural network; outer membrane protein; porin; topology 
prediction 

Outer membrane (OM) proteins are functional and structural con- 
stituents of the OM of Gram-negative bacteria. Transport across 
the OM  is an essential first stage of nutrient uptake into bacteria. 
OM proteins participate in transport complexes with phosphotrans- 
ferase or ATP-binding cassette transporter systems. Structurally 
known integral membrane proteins not from the OM, such as the 
photosynthetic reaction center (Deisenhofer et al., 1985), cyto- 
chrome c oxidase (Ostermeier et al., 1996; Yoshikawa, 1997), or 
rhodopsin (Schertler et al., 1993; Unger et al., 1997) are mainly 
composed of transmembrane (TM)  a-helices. However, there is 
growing evidence that many OM proteins fall into a different 
folding class, being mainly composed of TM  P-strands (Cowan & 
Rosenbusch, 1994). Porins are OM proteins that function as water- 
filled channels. The atomic structures of several porins are known, 
but structural data are not yet available for  a large number of 
nonporin OM proteins. The database of genetic and functional data 
for such proteins is considerable and structural models may help to 
interpret these data and to effectively plan further experimentation. 
They could be  used in conjunction with experimental low-resolution 
topology mapping procedures, such as monoclonal antibody bind- 
ing and epitope mapping or by genetically creating fusion proteins, 

Reprint requests to: Kay Diederichs, Universitat Konstanz, Fakultat fur 
Biologie (M656). D-78457 Konstanz, Germany; e-mail: Kay.Diederichs@ 
uni-konstanz. 

e.g.,  for insertion of protease cleavage sites (Ehrmann et al., 1997). 
Methods for predicting the topology of OM proteins based on their 
sequences are thus required. 

Previous topology predictions concentrated on predicting the 
locations of P-strands within the amino acid sequence. In contrast 
to TM a-helices, which may be predicted to high accuracy (Rost 
et al., 1995), this task appears to be more difficult for TM  P-strands. 
Methods for the prediction of TM  P-strands in OM proteins based 
on physicochemical properties of their amino acid composition 
were proposed by Paul and Rosenbusch (1985), Vogel and Jahnig 
(1986), J a n i g  (1990), Welte et al. (1991), and Schirmer and Cowan 
(1993). Although accurate results can be obtained if used in con- 
junction with a variety of sources of experimental information 
(Tommassen, 1988), these methods generally meet with limited 
success as  TM  P-strands in OM proteins are amphipathic and thus 
more difficult to find than blocks of hydrophobic residues. A sim- 
ple alternating pattern of hydrophobic and hydrophilic residues 
P-strands  is  also insufficient for TM /?-strand identification as the 
amphipathicity may be more complex. Pore-lining residues are not 
necessarily hydrophilic. Hydrophobic pore-lining residues may in- 
teract with hydrophobic residues in loops (e.g., loop 3  in nonspe- 
cific porins) or with transported solutes, as in maltoporin. A  mle- 
based approach for identifying TM P-strands in porins was proposed 
by Gromiha et al. (1997) and was shown to be effective within a 
limited set of three nonspecific porin structures. Rules giving the 
directions of the strands were not established, neither was the same 
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rule set applied to specific, 18-stranded porins or to the superfam- 
ily of OM proteins. 

An artificial neural network (NN) may be used to identify and 
model complex patterns in biological data (Presnell & Cohen, 
1993). NNs have been successfully employed for  the analysis or 
prediction of a number of protein properties, including secondary 
structure (Qian & Sejnowski, 1988;  Holley & Karplus, 1989; Kneller 
et al., 1990; Muskal & Kim, 1992; Geourjon & Deltage, 1994; 
Rost & Sander, 1994a). solvent accessibility (Rost & Sander, 1994b), 
folding  class  (Dubchak  et al., 1993), ATP-binding motifs (Hirst & 
Sternberg, 1991) and side-chain packing (Milik  et al., 1995). Here, 
we apply an NN to the task of predicting the z-values of Ca atoms 
of OM proteins. This prediction addresses both location and di- 
rection of &strands. 

A feedforward NN consists of two or more layers of processing 
units. The first and last layers are termed input layer and output 
layer, respectively, and intermediate ones  are called hidden layers 
(Fig. IA). Each unit i of  a given layer is connected to each uni t j  
of the next layer; the strength of each connection is given by a 
weight wii. The state s of each unit is a value in the range 0-1. 
Input units are assigned their states directly from the given input 
data, whereas the states si of higher layers j are computed by 
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Fig. 1. A: Architecture of NN (schematical). Examples for input amino 
acid sequences (one-letter code) resulting from  the NN input window slid- 
ing along the  protein sequence are given  (top). R: Cross-validated corre- 
lation of predicted  and observed z-values as a function of the  number of 
training cases. Error  bars indicate  standard deviations of correlation values 
obtained by different assignments of available cases into  training  and  test 
cases. The dashed curve represents a nonlinear f i t  (Equation 4) to the  data. 

where wjo is a bias from the states si of lower layers. 
During the “training phase” of NN operation, a “training set” of 

cases, each describing the states si of the input units and their 
associated output values Ok, is presented to the NN. The si and ok 
of these cases  are usually experimentally known quantities and are 
normalized to lie within the 0-1 range. In a feedback procedure 
(Rumelhart  et al., 1986), all weights {w} are then iteratively ad- 
justed  such that the total error, given by the sum of squared dif- 
ferences between the computed states sk of output unit and these 
target output values ok 

is minimized. 
Once the NN has been adjusted (or “trained”) during the “train- 

ing phase,” the weights reflect some of the properties of the un- 
derlying problem. In the “prediction phase,” new cases with known 
input values, but unknown output values, are fed into the NN and 
the previously obtained weights {w} are used to calculate the out- 
put states S t ,  which are then taken as predictions for the true Ok. 

Results 

Cross-validation of NN pedormance 

Figure 1B gives the dependence of prediction success for the test 
cases  as  a function of the number of training cases available in the 
training phase. As  a measure of prediction success, we chose the 
correlation coefficient c 

between predicted and observed z-values. C should be close to 0.0 
if no training cases  are present, and 5 1.0 if the number of training 
cases n goes to infinity. A simple saturation-type model for the 
value of the cross-validated correlation c as  a function of the 
number of available training cases-n meeting these two require- 
ments is given by 

c =  - n 
n 
- + b  a 

with adjustable parameters a, 0 5 a 5 1 as the saturation value (for 
n + co) of the correlation and h, b > 0 as an offset. 

Indeed, this function yielded a satisfactory f i t  (dashed line) to the 
results obtained for training sets of different size, and values of ( a  = 
0.65, b = 541) were obtained. Such results signify that with the cur- 
rent architecture of the NN a maximum correlation around 0.65 can 
be obtained for n + co. However, even with the seven porin struc- 
tures presently available (n = 2,388), the correlation is 0.58. 
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When  calculations were repeated after deleting PhoE from the 
training set, correlation coefficients were within the error bars 
shown in Figure lB,  indicating that the influence of homology 
on the cross-validation results obtained with all seven porins is 
minor. 

Predictions of known structures: Comparison of predicted 
and actual topologies 

To demonstrate the agreement between prediction and experimen- 
tal structure, we present the actual and predicted topologies of 
porin from Rhodobacter capsulatus in a “topology plot” (Fig. 2). 
The correlation coefficient c in this case was determined by cross- 
validation to be 0.50. The highest pairwise identity of R. capsu- 
latus porin to any member of the training set is 23% (Paracoccus 
porin); average  painvise identity is 14.8%. Following are a number 
of salient features: A predicted z-value of 0.6 or less generally 
corresponds to a TM or periplasmic location. The signal for peri- 
plasmic turns is somewhat weak, with predicted values between 
0.2 and 0.4. In contrast, the signals for extracellular loops are 
strong, either matching or exceeding the actual z-values in most 
cases. The prediction differs significantly from  the actual topology 
in two regions. The first of these is residues 85-1 15, corresponding 
to the pore-constricting loop 3, which folds back into the P-barrel. 
The NN predicts an extracellular loop for  this region; thus, it 
identifies an underlying pattern that is masked by highly specific 
interactions between loop 3 and the barrel wall, which are not 
extracted from the sequence. The second area of disagreement 
covers residues 210-230. In porin from R. capsulatus, this region 
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forms a small globular extracellular domain that is unique among 
porins of known structure. The NN prediction is for two TM 
/?-strands and a tight periplasmic turn in this area. The presence of 
hydrophobic residues in the core of the globular extracellular do- 
main may give this region a more amphipathic character than is 
usual for extracellular loops in OM proteins, and thus lead to the 
prediction of a TM localization for these residues. However, the 
overall correspondence between prediction and experimental data 
is good and confirms that the general topological pattern of OM 
proteins can be predicted by this method, with the qualification 
that unique and specific patterns may be overlooked. 

Negative controls 

If the network is to be able to correctly predict the topology of OM 
P-barrel proteins, it must also be able to distinguish between mem- 
brane proteins with a-helical or with P-sheet secondary structure. 
As a control, we used the sequence of human rhodopsin, a mem- 
brane protein known to be composed of a-helices (Schertler et al., 
1993; Unger et al., 1997). We had expected the predicted z-values 
randomly fluctuating around 0.5. The actual output is markedly 
different both from our expectations and from the outputs for 
porin: sharp transitions from low to high to low predicted z-values 
alternate with broad stretches of low predicted z-values. Similar 
outputs were obtained for other a-helix-containing membrane pro- 
teins of known structure, i.e., cytochrome c oxidase (Ostermeier 
et  al., 1996; Yoshikawa, 1997) and photosynthetic reaction center 
(Deisenhofer et al., 1985). Thus, NN output for TM a-helix pro- 
teins is readily differentiated from output for  TM  P-strand proteins. 

0 50 100 150 200 250 300 
sequence # 

Fig. 2. Topology plot: predicted z-values are plotted against the amino acid sequence. This example shows a comparison of actual 
(dashed line with markers) and predicted (continuous line) topologies for porin from R. cupsulutus. Predicted z-values were obtained 
without information from the R. capsulatus structure in the training set. Arrows correspond to the 16 P-strands revealed in the X-ray 
structure. N- and C-termini are periplasmic. 
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Further negative controls were performed with a number of 
soluble proteins. None of the controls exhibited periodic alter- 
ations between high and low z values, as is typical for porins. In all 
cases, topology predictions resembled plots of a random variable 
with mean 0.5. 

Topology predictions of proteins with unknown structure 

The set of proteins we investigated was chosen on the basis of 
substantial available experimental topological data (OmpA, Hib 
porin, FhuA) or of the prospect of structure determination in the 
near future (OmpA, Omp32, FepA, FhuA). These proteins also 
represent systems for which topology prediction may be of interest 
to microbiologists or molecular biologists in the field. 

OmpA from Escherichia coli 
OmpA is one of the major protein constituents of the outer 

membrane of Escherichia coli. It participates in the maintenance of 
cell surface integrity (Sonntag et al., 1978) and is a receptor for 
various phages and colicins (Morona  et al., 1985). Although there 
is no crystal structure for OmpA yet, a number of its general 
structural features have been determined and a structural model 
proposed (Morona et al., 1984; Vogel & Jahnig, 1986; Ried et al., 
1994; Koebnik & Kramer, 1995; Koebnik, 1996), with an N-terminal 
domain (residues 1-170) forming an eight-stranded TM  P-barrel 
and the remaining residues forming a C-terminal periplasmic do- 
main. An alternative model of a 16-stranded P-barrel  for OmpA 
has more recently been put forward (Stathopoulos, 1996). 

Before comparing our prediction to the competing models for 
OmpA, we first used experimental data on the localization of 
specific residues to assess the reliability of the NN output (Chen 
et al., 1980; Morona et al., 1984, 1985; Freud1 et al., 1986, 1989; 
Ried et al., 1994; Ruppert et al., 1994; Georgiou et al., 1996). 
Experimental and predicted localizations are in agreement in the 
majority of cases (13 out of 19; see Table I in the supplementary 
material). Thus,  it seems that the predicted topology for OmpA 
agrees mostly with the experimental data. The output of the NN 
and its interpretation as a topological model are given in Fig- 
ure 3A. Four “extracellular” peaks are evident in the N-terminal 
domain, suggesting eight TM  P-strands between residues 1 and 
170. However, the strongest “extracellular” peak occurs after res- 
idue 170 and is followed by a series of peaks that, overall, result 
in a prediction of at least 16  TM  P-strands for OmpA. Thus our 
prediction tends to support the more recent model of OmpA from 
Stathopoulos (1 996). 

Porin from Haemophilus influenzae Type b 
Haemophilus injluenzae (Hib) is a Gram-negative bacterium 

and a cause of infant meningitis. The nonspecific porin (341 res- 
idues, 38 kDa) from Hib is well characterized (Srikumar et al., 
1992a, 199213, 1997). Its active form is trimeric and it  forms mildly 
anion selective channels with mean conductance (1.1 nS) and mass 
exclusion limit (1,400 Da) values significantly higher than those of 
nonspecific porins of known structure. Its topology has been in- 
vestigated using monoclonal antibodies to four epitopes between 6 
and  11 residues long. Antibody binding (in whole cells, and to 
porin in micelles) was determined using flow cytometry and ELISA 
techniques (Srikumar et al., 1992a, 1992b). Two epitopes were 
strongly bound: residues 162-172 and 318-325. The first of these 
regions gives a strong signal for an extracellular location in the 
topology prediction for Hib porin (Fig. 3B), whereas the second is 

predicted to have a  TM location. A third epitope, residues 148- 
153, was not available for antibody binding. A periplasmic location 
is predicted for this sequence. A fourth epitope, residues 112-126, 
was also not bound by antibodies. This  epitope corresponds to the 
proposed gating loop for Hib porin, which in  all known porin 
structures is the third extracellular loop. Our prediction places this 
sequence within loop 3. As in all porins of known structure, loop 
3 of Hib porin is likely to fold back into the pore and is thus not 
available at the extracellular surface for antibody binding. The C3 
epitope of the poliovirus VPl capsid protein was introduced into 
Hib porin after residue 174; flow cytometry using anti-C3 anti- 
bodies indicated that the epitope had an extracellular location (Sri- 
kumar et al., 1997). Residues 174 and 175 are predicted to reside 
in the fourth extracellular loop. Overall, there is good agreement 
between predicted and experimental locations for specific residues 
in Hib porin. 

Omp32 
Omp32  is the major protein component of the OM of Comamo- 

nus acidovorans and is an anion-selective nonspecific porin (332 
residues, 36 kDa). This porin has been crystallized (Zeth et al., 
1998) and a structure determination should be complete within the 
near future, which will provide an excellent assessment of topol- 
ogy prediction accuracy of the NN. A topological model of Omp32 
based on the NN predictions is given in Figure 3C.  The topology 
of Omp32 was analyzed by proteolysis (Gerbl-Rieger et al., 1992). 
Six locations were found to be protease accessible. Two  of these 
six locations (residues 123-126 and 200-201) are predicted to  be 
extracellular, with a further two (26-30 and 3 17) predicted to be at 
the TM/extracellular interface. Thus, in four cases out of six, 
prediction and experimental data may be reconciled. The forth- 
coming structure of Omp32 will give a more thorough test of 
prediction performance for this porin. 

FepA and FhuA 
Both FepA (724 residues, 78 kDa) and FhuA (714 residues, 

79 kDa) are involved in the TonB-dependent, active uptake of 
iron-bearing siderophores into E. coli. They both reside in the OM 
and bind ferric enterobactin and ferrichrome, respectively, allow- 
ing passive uptake of these siderophores into the periplasmic space; 
from there they are actively transported across the inner mem- 
brane. Both proteins are predicted to form antiparallel P-barrels of 
up to 32 strands (Murphy et al., 1990; Koebnik & Braun, 1993). 
Much topological information is available for both proteins. In 
addition, both proteins have been crystallized (Buchanan et al., 
1996; Ferguson et al., 1998) and the future comparison of structure 
and prediction for these nonporin proteins will greatly aid the 
evaluation of the NN. 

The topology of FepA was investigated using monoclonal anti- 
bodies to epitopes between 10 and 50 residues in length (Murphy 
et al., 1990). Five epitopes: residues 27-37, 204-227, 258-290, 
290-339, and 382-400 were reported to show antibody binding by 
flow cytometry and, thus, assumed to have an extracellular loca- 
tion. Due to the length of these sequence stretches, it is difficult to 
correlate the experimental data with the prediction. A stretch of 40 
residues may well have both extracellular and periplasmic as well 
as TM components. However, all epitopes contain sections with 
strong extracellular predictions and thus may have extracellular 
regions sufficient to account for antibody binding (Murphy et al., 
1990). Results of a site-directed spin-labeling study of FepA sug- 
gested that residue 280 is surface-localized and that residue 3 10 is 
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located close to the extracellular-membrane interface (Liu et al., 
1994). In our prediction, these residues have an extracellular and 
an extracellular/TM localization, respectively. A more recent spin- 
labeling study assigns a  TM localization to residues 245, 249, and 
253 (Klug et al., 1997). All three residues have a TM localization 
in our prediction. A double mutagenesis study showed that residues 
286 and 316 are involved in siderophore binding and the action of 
colicins B and D; they should thus be extracellular (Newton  et al., 
1997). We predict that these residues are TM and extracellular, 
respectively. In general, the agreement between predicted and ex- 
perimental localizations is good for FepA. 

FhuA has been subject to a number of topological investigations. 
Peptide insertion mutants were generated and their expression and 
functionality observed (Koebnik & Braun, 1993). Those mutants 
that retained function were deemed not to have been altered in  a 
TM  P-strand. Active mutants were, therefore, altered in a loop or 
turn region. Active mutants with reduced phage or colicin sensi- 
tivity are assumed to have an extracellular location (Koebnik & 
Braun, 1993). Experimental and predicted localizations were iden- 
tical in 15 of  17 cases. Residues 301, 405, and 417 were deter- 
mined to be extracellular by the use  of polio C3 reporter epitope 
and flow cytometry (Moeck  et al., 1994). All three residues are 
predicted to be extracellular. A topological analysis of FhuA using 
monoclonal antibodies indicated extracellular or periplasmic lo- 
calizations for  a number of residue stretches (Moeck  et al., 1995). 
Again, the length of the peptide stretches used as epitopes in that 
study makes interpretation more difficult as 35 or more residues 
may well encompass more than one topological location. However, 
each epitope is predicted to have, at least partly, the same local- 
ization as found using monoclonal antibodies, e.g., determinant 
sequences 321-381 and 417-550 were bound by monoclonal anti- 
bodies with an extracellular localization and both sequences con- 
tain stretches predicted to be extracellular (348-371, 434-461, 
487-510,  and 534-550, respectively). The comparison of FhuA 
experimental and predicted topology is, overall, most encouraging 
(see Table 2 in the supplementary material). 

Discussion 

An impression of the quality of the NN topology prediction can 
most easily be obtained from Figure 2. It is obvious that although 
the prediction of z-coordinates is far from perfect, the essential 
features of the porin fold are captured. It should be noted that no 
filtering (e.g., constraining differences betwen Ca z-values to a 
maximum of 3.8 A) or smoothing was applied to the output. In our 
experience, qualitative aspects of topology plots, such as direction 
and locations of P-strand residues, are best derived by visual in- 
spection. It appears that the position of the residues with highest 
z-value and the directions of the P-strands are predicted quite 
reliably, whereas the number of residues in a  TM strand is not 
easily inferred from the topology plot. 

Efficient abstraction of rules by an NN requires that the number 
of training cases be substantially higher than the number of inde- 
pendent variables, and, for  a given architecture of the NN, its 
accuracy generally increases with the number of data available 
(Chandonia & Karplus, 1996). To overcome the paucity of avail- 
able structures of OM proteins, we characterized the asymptotic 
learning behavior of a simple NN architecture by cross-validation. 
These results are valid because the sequence homology between 
training and test data is generally low,  and were confirmed by 

exclusion of one member of the two sequences with the highest 
painvise sequence identity. 

Levels of sequence homology between proteins of the training 
set and those for which predictions are analyzed here are even 
lower than within the training set; the highest pairwise sequence 
identity is 16% (Rhodopseudomonas blustica porin/Omp32) and 
the average is 1 1 %. Given that no high-resolution structural infor- 
mation about the proteins with predicted topologies is available, 
and existing data are from a variety of experimental sources, the 
correspondence of predicted and experimentally derived topolo- 
gies is good. This indicates that general features of OM protein 
topology, also applicable to proteins dissimilar to the training set, 
are modelled by the NN. 

For the problem of OM protein topology prediction, the NN 
described here thus appears to be useful even though relatively 
little topological information about this class of proteins is avail- 
able. With more structural information, derived from ongoing X-ray 
analyses of OM proteins in our and other groups, we believe that 
improvements in the accuracy of prediction will be possible. First, 
a higher number of training cases would marginally improve the 
results for the architecture of the NN described here (Equation 4). 
A higher gain in accuracy, however, is likely to be obtained by 
altering the architecture of the NN to make efficient use  of the 
higher number of training cases then available, e.g., implementa- 
tion of a larger hidden layer (Chandonia & Karplus, 1996). 

Compared to methods based on physicochemical parameters of 
amino acids, an NN of a given architecture has the disadvantage that, 
after the training stage, the available information about properties 
of the system under study is not readily accessible, being encoded 
into a large set of numbers, the weights {w}. Although an a poste- 
riori analysis of the weights may be possible in principle, there is  no 
procedure available for deriving from the weights a set of rules with 
parameters for single amino acids and their interactions. This hin- 
ders a simple abstraction of the optimized weights into a  scheme  for 
human understanding of the rules that govern the system under study. 
Work is underway to probe our NN with random (computer- 
generated) sequences that might allow identification of common fea- 
tures leading to particularly high or low predicted z-values. 

An NN, although seemingly complex at first sight, is a powerful 
and simple implementation of a general method adapting itself to 
a wide range of biological (and other) problems. As the output of 
an NN depends on the input in a nonlinear way (Equation 1) and 
the hidden layer allows for interactions among the input units, the 
NN training procedure may satisfactorily model complex biolog- 
ical systems that are hard to capture with simple rules. 

Modeling of OM protein topology from the amino acid sequence 
alone has thus far relied on prediction of P-strands; in the absence 
of experimental information, the amino- and carboxy termini were 
often assumed to be  in the periplasm. The topology was then de- 
rived from the P-strand prediction by connecting the strands in an 
antiparallel fashion. This approach appears justified at first sight as 
the known OM protein structures are particularly simple 16-stranded 
antiparallel &barrels with nearest-neighbor connections between 
strands. Although simple, this topology  of  TM P-strand proteins gives 
rise to a particular difficulty with respect to constructing their to- 
pology from a given P-strand prediction: as adjacent strands are anti- 
parallel, the direction of membrane of a given strand is implied by 
its position within the sequence of all strands. Thus, if a strand is 
missed by the prediction or if a strand is predicted where none ex- 
ists, the resulting topology  will  be reversed starting at the point where 
the error occurred. The NN described here avoids this pitfall since 
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at each position of the sequence a local property (z-value) directly 
related to topology is predicted, independent of preceding stretches 
of amino  acids. Errors in the prediction are not propagated to the 
sequence that follows, as both the location (periplasmic, TM, ex- 
tracellular) and the direction of traversal of this region are derived 
from the z-values of the Ca-coordinates. 

Even at the current, somewhat modest state of knowledge, our NN 
generates models of OM proteins that can be directly correlated with 
existing experimental data. We envisage our method to be used by 
molecular biologists working with OM proteins of gram-negative 
bacteria to assist in experiment  design, e.g., introduction of His- 
tags, protease cleavage sites, or construction of fusion proteins. 

No reliable tertiary structure (3D) prediction methods for OM 
proteins are currently available. Following Jones (l997), our method 
can be termed a 2D prediction method, as it goes beyond the 
information available from secondary structure prediction (ID) 
methods. The NN topology prediction is accessible as an online 
service  on the World Wide Web (http://strucbio.biologie.uni- 
konstanz.de/-kay/om-topo-predict.htm1). 

Materials and methods 

Preparation of training sets for NN training 

Porin structures solved by X-ray crystallography were obtained 
from the Protein Data Bank for R. capsulatus (2POR), Rhodopseu- 
domonas blastica (IPRN), OmpF (20MF), PhoE (IPHO), and 
maltoporin (IMAL). This set of publicly available structures was 
augmented by the locally solved structures of nonspecific porin 
from Paracoccus (Hirsch  et al., 1997)  and sucrose-specific porin 
(IAOS) from S. typhimurium. 2POR defined the reference frame, 
as the z-axis of its crystal structure is already aligned with the pore. 
Therefore, for 2POR. high z-values of the C a  coordinate imply 
residues of the extracellular loops whereas low z-values denote C a  
positions in or near the periplasmic turns. The coordinate sets 
(2,388 cases altogether) of the other porins were structurally aligned 
with those of 2POR using SUPERIMPOSE (Diederichs, 1995). To 
obtain the target output values ok, a transformation was obtained 
by normalizing the z-coordinates of C a  atoms from 2POR to lie in 
the 0.0-1.0 range. The same transformation was applied to all 
other C a  coordinates, yielding a total set of 2,388 cases. After 
normalization, z-values below 0.1 were truncated to 0.1 and z-values 
above 0.9 were truncated at  0.9, to avoid strong bias of the NN 
weights toward the extracellular loop or periplasmic turn regions. 

Architecture of the NN 

A backpropagation NN with 15 * 21 input units, two hidden units, 
and one output unit (Fig. 1 A) was used for determining the weights 
and for prediction of (normalized) C a  z-values. The 20 amino acid 
types in a sliding window of 15 residues were used as input data, 
with an additional pseudo amino acid type indicating a position be- 
fore the amino terminus, or beyond the carboxy  terminus.  This 
pseudo amino acid type is only required if the central position of 
the sliding window is between residues 1 and 7 inclusively, or be- 
tween residues N-6 and N inclusively of the amino acid sequence 
( N  being the total number of residues of the sequence). Each amino 
acid type was coded as  a string of  21 “0” or “1” values (e.g., “10000 
0000000000000000” for Ala, “0  10000000000000000000’ for Cys, 
and so on), therefore requiring 15 * 21 input units. This NN topol- 

ogy is similar to that used by others (Holley & Karplus, 1989) for 
the prediction of secondary structure properties of soluble proteins. 
Compared to these studies our NN employs  a somewhat smaller in- 
put window and only one output unit. The number of input amino 
acid positions used (1 5) encompasses  at least one  and often two 
P-strands.  This window size was therefore judged large enough to 
represent essential sequence information about the amino acids at 
and near a given C a  position. One output unit, representing the nor- 
malized C a  coordinate, is the natural choice in the case of a smoothly 
varying and normalized target value, as no threshold parameter for 
the choice between two binary output values is required. 

Cross-validation of training success 

ANN can be used to abstract properties of input data that generally 
lead to preferred values of output data. However, a successful 
generalization of underlying principles in the prediction of prop- 
erties by an NN requires a much larger number of cases than the 
number of adjustable parameters (weights). With the given archi- 
tecture of the NN used here, there are (15 * 21 + l )  * 2 + 
(2 + 1) * 1 = 635 weights to be adjusted during the training phase. 
As the number of cases is less than a factor of four higher than the 
number of weights, we monitored the training success by cross- 
validation (Efron & Tibshirani, 1991) as  a function of case num- 
ber. For this purpose, the 2,388 available cases were randomly 
assigned to either  a “training set” or a “test set.” Cases from the 
training set were used for adjusting the weights and cases from the 
test set were used afterward to assess the quality of the prediction. 
The relative size of the training set with respect to the test set was 
varied to investigate the influence of case number in the training 
set and to obtain an estimate of the asymptotic training behavior. 

It was shown (Qian & Sejnowski, 1988) that high sequence 
homology between training and test sets may lead to false indica- 
tions of greater accuracy of NN performance. For the data under 
study, there are no homologous repeats within the sequences of the 
proteins used, and there is only one case of high painvise sequence 
identity (60% for OmpF/PhoE). All other pairwise alignments 
show low (37% for BlasticalPuracoccus) or insignificant (<23%) 
sequence identity. To test the effect of homology on cross-validation 
results, the above calculations were repeated with PhoE deleted 
from the cases available, resulting i n  2,058 cases instead of 2,388. 

Note added in proof 

After submission of this paper, we solved the X-ray structure of 
FhuA. Consistent with the NN prediction presented here, the ar- 
chitecture of the protein is dominated by a 22-stranded beta barrel. 
In addition, the first 160 residues form a “cork” domain which fills 
the central cavity of the barrel. This domain displays four addi- 
tional beta-strands, several helices, loops, and coils. 
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