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Improved R-factors for diffraction data analysis in
macromolecular crystallography

Kay Diederichs' and P. Andrew Karplus?

The quantity R, (also called R,.o) is almost universally used for describing X-ray diffraction data quality.
Here, we prove that R, is seriously flawed, because it has an implicit dependence on the redundancy of the
data. A corrected R-factor, R, is introduced as the equivalent robust indicator of data consistency. In
addition, we introduce R, 44, an R-factor that reflects the gain in accuracy upon averaging of equivalent
reflections, as a useful indicator of the quality of reduced data. These new data quality indicators better reveal
the benefits of highly redundant data and should stimulate improvements in data quality through increased

merging of data from multiple crystals.

R, (sometimes called Rmerge), is the most widespread statistic
used to indicate data quality for macromolecular crystallogra-
phy?2, and with the advent of area detectors for small molecule
crystallography it is a standard quality indicator for that field as

well3. It is defined as:
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Arndt* introduced R, as a reliability indicator for data collected
by precession photography, where R, was specifically summed
over symmetry-related intensities on the same film, and R_,, cal-
culated in an analogous fashion, reported the agreement of iden-
tical reflections measured on different films. As oscillation
photography was introduced, so that symmetry related reflections
were not commonly on the same film, it appears that the original
Ry, and Ry, were combined into the present day R, which is
summed over all observed equivalent reflections.

R, is commonly used to guide decisions during data reduc-
tion, such as determining to what resolution data are reliable, and
whether two crystals are isomorphous, so that their data should
be merged together. A single R, value is generally reported in
publications to summarize the data quality. Overall Ry, values of
<5%, 5-10%, 10-20% and >20% are taken to indicate good,
usable, marginal, and questionable quality data respectively?.
Here, we present empirical and mathematical analyses proving
that R, is an inherently unreliable indicator of data quality. We
also present alternate indicators that provide more robust mea-
sures of the quality of the individual measurements as well as of
the final reduced data set. We expect that the application of the
ideas described here will result in improved primary data quality,
and ultimately in more accurate macromolecular structures.

Experimental data

The analyses presented here hold true for diffraction data mea-
sured with various detector/software combinations, but for sim-
plicity, we present analyses based on three sets of data collected
from crystals of the enzyme urease with Cys 319 from the a-chain
mutated to Ala®. These crystals are isomorphous with wild-type
urease and grow in space group 12,3 with a=170.8 A%7. Indepen-
dent 2 A resolution data sets were collected from each of three
crystals which had been soaked at pH values of 6.5, 7.5 and 8.5;
these are designated Ure_1, Ure_2, and Ure_3 respectively. Differ-
ence Fourier maps showed no apparent structural changes
between the data sets, so for the purposes of this study, we are
treating them as equivalent. The three crystals had approximate
volumes of 0.036, 0.027 and 0.036 mm?, and the data sets were
successively collected using a Rigaku RU-200 rotating anode (Cu-
Ko, 50kV, 150 mA) and a pair of SDMS MARKII multiwire
detectors® placed at 20-values of 14° and 34° and at distances of
719 and 780 mm respectively. Each data set consisted of three 50°
@-sweeps, using either 0.1° or 0.08° steps and an w-scan rate of 10
min degree’l. The data from all sweeps were reduced and merged
together using SCALEPACK?®. Conventional statistics are reported
in Table 1 for six different data reductions based on the data from
these three crystals: data reductions for each of the sweeps of the
first crystal (Ure_1A, Ure_1B, Ure_1C), the three complete data
sets (Ure_1, Ure_2 and Ure_3), and a data set obtained by merg-
ing all three crystals together (Ure_123). As expected due to the
larger sizes of the crystals, the Ure_1 and Ure_3 data sets yield
slightly better statistics than the Ure_2 data set.

R, m inherently depends on multiplicity

When data from multiple crystals are merged, the Ry, of the
combined data set is commonly higher than those of the indi-
vidual data sets. Similarly, R, usually rises as a function of
frame number during a sinigle measurermnent. Whereas this prop-
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erty of Ry, has been noted'®!!, it has not been comprehensively
documented nor formally deduced. Such increases in Ry, are
generally attributed to slight non-isomorphism or systematic
errors (mainly absorption, radiation decay) between the data seg-
ments, and large increases are taken as grounds for not merging
data sets, for discarding the final frames of a data collection run,
and/or for lowering the threshold for outlier rejection. This
behaviour of Ry, has contributed to the common practice which
favours using complete data sets from single crystals whenever
possible.
Ags is illustrated in

overlap of the curves pro-
vides evidence that there
is little systematic differ-
ence between the individ-
ual data sets.
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and Ure_1C (~1.7-fold increase overall and ~1.5-fold increase at
high resolution) would normally be interpreted to indicate sys-
tematic differences between the data sets being merged. However,
an analysis of R, as a function of multiplicity suggests that the
cause of the increased R, values is not systematic differences
between portions of the data, but rather an undesirable depen-
dence of R, on multiplicity. Using a single set of reflections, so
that the only variable is multiplicity, the value of Ry, increases
smoothly in an asymptotic manner from 13.4% to near 19% as
the multiplicity increases from two to twelve (Fig. 2). Control

Table 1 and Fig. 1a,

Table 1 Data collection statistics summary’

our urease test data

show this common Dataset Unique  Completeness  Multiplicity Reym Rimeas <lo>2 Renega-
behaviour: The R reflections (%)

values are lowest for Ure_1A 37776 68(40) 1.6(1.2) 41(22.9)  5.5(32.4) 8.6(2.6) 8.0(28.6)
the smallest seg- '

ments of data (the Ure-1B 37049 67(36) 1.6(1.3) 46(230) 62(32.5) 86(26)  9.2(284)
individual  sweeps

Ure 1A, Ure IB, Ure1C 38502 69(38) 1.5(1.2) 45(246) 6.034.9) 8.0(2.4) 8.7(30.2)
and Ure_1C), they

are intermediate for Ure_! 53925 97(70) 3.3(2.0) 6.0254)  7.1(33.1) 11.6(32)  103(27.4)
the single data sets

(Ure_1, Ure 2, and Ure-2 52787 95(64) 3.3(2.0) 6.8(285)  7.9(35.9) 10429  10.9(27.3)
Ure_3) and they are

highest for the Ure3 53814 96(68) 3.3(2.0) 5.5(26.4)  6.5(33.6) 12734  95(27.1)
merged data set

(Ure 123).  The Ure_123 54941 98(85) 9.6(4.7) 7.731.3)  8.1(348)  20.149)  6.9(20.2)
higher R of

Ure_123 compared

to Ure_lA, Ure_1B, 2(Jo) of the merged intensities.

10verall values of crystallographic indicators are given for all measured data to 2.0 A resolution. Numbers in brackets indi-
cate the values in the highest resolution range (2.07-2.0A).
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Fig. 2 The behaviour of data quality indicators as a

30 L | | 30 function of multiplicity. Solid lines are used for the
b r three indicators of the quality of individual measure-
- - ments: Ry, (Open square); Ryease (Closed squares); PCV
25 - PCV..| 25 (closed triangles). Dashed lines are used for the indica-
— ] r tors of reduced data quality: R, oq (closed circles);
o\o < L Rmrgd-F (open circles); <Fop> (X). Note that the value of
~ 20 - = A R — N B eas-t 20 3.8 observed for the <¥o> of the individual measure-
x ] x-kx- X -~ R ot A ments (multiplicity of 1) and the PCV of 25.5% are
_8 ] W sym [ o  consistent with the relation PCV=100*<lo;>" (see
& 15 - e P [ 15 &  box). This analysis was carried out using all 3137
= 1 P ; ~0. _ o <Vs> 1 reflections which were between 3 and 2 A resolution
> . h- O.g-® - 3 e
= 1 =N v %o R b o and were observed =12 times in the Ure_123 dataset.
- 10 i”.’ megcll 1 Y For these high-multiplicity reflections, the observa-
= . - T o tions in excess of the 12th were discarded. Then, for
T ] P d =0 Rmrgd_F: each multiplicity value n given on the abscissa, n out
53 e "5 of the 12 observations of each reflection were selected
1 e + randomly and used for calculating the statistical indi-
] L cators. This approach allowed each of the 12 observa-
04 : : ‘ — Lo tions to contribute equally for all muitiplicity values.
2 6 8 10 12
multiplicity
calculations using fictitious data with perfectly Gaussian error signal level):
prove that this ~1.4-fold increase reflects an inherent property of (3)
Ry, (Fig. 3). Since the ability to accurately estimate data quality | R N
must improve with increased number of data, the R, value truly Z Z (In.i - In)
reflecting data accuracy is the asymptotic value obtained at high PCV= _h ny -175

redundancy.

Two robust alternate indicators: R, and PCV
Mathematical analysis (see Box) makes explicit how the contribu-
tions of reflections to R, depend on their multiplicity, and leads
us to propose two alternate well-behaved measures of data quality.
The first is an adjusted R, which we have dubbed R, ., because
it should accurately reflect the reliability of individual measure-
~ments, independent of multiplicity. The mathematical analysis
(see Box) shows that a robust variant of Ry, can be obtained by
adjusting each reflection’s contribution by a factor of
V/1ny/(n,—1) , where ny is the multiplicity:

2) n
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For data sets with fixed redundancy #, this is equivalent to multi-
plying Ry, by the factor v/n/(n~1 ), but for typical real data sets,
it is important that the factor be placed inside the sum so that the
contributions from the individual reflections are appropriately
weighted according to their multiplicity. The magnitude of the
scaled difference terms \/ny/{ny—1) |I, — Jij is not correlated
with the multiplicity n, of a reflection, and R, values for low
redundancy data sets are as high as those of high redundancy data
sets (Fig. 3). This also means that the merging R, of two data
sets should be close to the average of their individual, internal
R, Vvalues, if no systematic differences (for example, anisomor-
phism) exist between the data sets. This is in sharp contrast with
the behaviour of R, .

A second robust indicator of data quality, which is commonly
used in statistics, is the pooled coefficient of variation (PCV), in
which the pooled standard deviation (the statistically valid mea-
sure of the noise level) is divided by the sum of the intensities (the
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A mathematical analysis shows that for Gaussian distributed
error, PCV should be exactly a factor of +/II/2 (~ 1.25-fold) larger
than R, (see Box and Fig. 3). We suspect that despite the
greater statistical information content of the PCV, crystallogra-
phers will prefer to use R, because it gives values which can be
compared with the past literature. PCV is related to other ‘qua-
dratic’ R-factors used in popular data reduction software®1112,
but it includes the important factor 1/(n,—1) that makes it robust
with respect to multiplicity.

For the urease data, examining the behaviours of both R,
and PCV as a function of multiplicity (Fig. 2) it can be seen that
both are relatively constant with respect to redundancy, and the
PCV is, indeed, about 1.25-fold higher than R_ .. Using R, to
assess the six merged urease data sets shows that the misleading
behaviour seen for R is abolished (compare Fig. 14 versus Fig.
1a). Independent of how much data is merged together, the R ..
values match closely the Ry, values seen for the high multiplicity
Ure_123 data set and indicate that there are no large systematic
differences between the data sets.

The discrepancies between R, and R are largest for data
with low multiplicity and can be as large as a factor of /2.
Although modern (area detector) data sets often have high redun-
dancy so that the problems with Ry, are lessened, not all do. A
recent 1.95 A resolution haemoglobin structure was based on data
with a completeness of 76% (38% in the highest resolution bin)
and a multiplicity of 1.7 (1.1 in the highest bin)'3. This is quite
similar to the completeness and multiplicity of the Ure_lA, B, or
C data sets reported here, and indicates that the reported overall
R Of 4.1 strongly overestimates the data quality. Another case is
the structure of the C-reactive protein, in which data were careful-
ly selected from 33 crystals to yield a data set with 74% complete-
ness and 1.5-fold multiplicity with a high R, of 25.5%!4. Given
the low multiplicity, the true data quality (as measured by
R, cs) would be significantly worse. Finally, we note that even
for those data sets with high multiplicity, it is common that the
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highest resolution bin has the lowest multiplicity. Thus, exactly
where one should be most concerned about data quality, the
inherent properties of R, ., make it least reliable.

For crystals of unknown space group, usually the symmetry of
intensities in a given Bravais lattice is found by comparing R,
values after reducing a set of frames in alternative space groups
(for example, P4 (o123 versus P4(0,1,2,3>2(0)1)2(0,1)). In this sce-
nario, Ry, will always favour the space group(s) with lower sym-
metry, as the average multiplicity of reflections will be less than in
the high symmetry space group(s). Use of R, on the other
hand, would give unbiased indications toward the highest sym-
metry compatible with the diffraction pattern, and would there-
fore help to avoid space group assignment errors!>.

An additional problem with ‘overall’ reliability factors

The use of R, (or PCV) instead of R, removes misleading
impressions of data quality that make less redundant data appear
better. However, it does not fix an additional problem inherent in
overall R,  values. This additional problem occurs because
reflections contribute to the overall R, in proportion to their
multiplicity, and multiplicity may be distributed differently in
various data sets. In the urease data sets, this effect can be seen in
the variation of the overall R, values in Table 1 from 5.5 to 8.1,
despite the fact that the R, values as a function of resolution
vary much less (Fig. 1b).

‘Within a narrow resolution range, R, has meaning, because
multiplicity is fairly constant and {more importantly) should not
be correlated with a reflection’s reliability. However, when data
across wide ranges of resolution are combined, the overall R,
depends heavily on how the multiplicity is distributed versus reso-
lution (Fig. 4). Although the Ure_1C and Ure_123 data sets have
nearly identical R ., in all resolution ranges (Fig. 1b), the
Ure_IC data set has a lower overall R_.,, (6.0 % versus 8.1 %)
because it has higher relative multiplicity at low resolution. In
extreme cases, the overall index could vary between values
approximating the R ... of the low resolution data and values

272

Fig. 3 The figure is equivalent to Fig. 2 but reports statistics based on a
computer generated set of 10,000 reflections which have intensities that
are normally distributed with a I'y.= 50, ¢ = 10. Plotted are R, (open
squares), Rymess (filled squares), and PCV (triangles). The dashed line
marks the value for Ry, obtained for infinite multiplicity (calculated by
substituting Iy, for <& in equation 1}.

approximating the R, of the high resolution data.

For ‘typical’ data sets, the low resolution (more accurate) data
have higher multiplicity and dominate to yield a low overall R, .
However, many data sets are not typical. For instance merging a
lower resolution data set with a complete high resolution data set
(as in the report of a camel antibody structure!®) would tend to
skew the multiplicity toward lower resolution reflections, whereas
the merging of a data set consisting of exclusively higher resolu-
tion reflections (such as may be obtained by swinging out a detec-
tor) would tend to skew the multiplicity toward higher
resolution!”. In many published reports, the importance of such
effects are hard to assess. For instance, the distribution of multi-
plicity is not described in the C-reactive protein study cited
abovel4, but if the multiplicity involves largely the higher resolu-
tion reflections, the overall R, of 25.5% would not be as bad as
it appears. '

Indicators of reduced data quality

The above discussion shows that R ..., as opposed to R, pro-
vides a robust measure of the consistency of individual measure-
ments. While that is important, it is also desirable to have
measures which estimate the reliability of the reduced data. <I/G>
is such an indicator , but no generally accepted R-factors for this
purpose exist. The reduced data will, in general, be more accurate
than individual measurements, because the averaging of multiple
observations leads to increased accuracy (a theoretical factor of
\/ny, for reflections with multiplicity n,) that is not reflected in
R, s (o1 the other measures) 8. For a number of years, one of us
(P.A.K.) has used a statistic called R, , which does reflect much of
the accuracy gained through high redundancy, because it is calcu-
lated from data that have been partially merged!*?°. R, is simply
the R-factor between the amplitudes of Friedel pairs,

@ SIF. - Rl
0.5%Y F.-+F..

and can be calculated from the output of a special data reduction
run that does not merge the Friedel pairs. R, underestimates the
final data quality because of an additional improvement (up to a
factor of \/2) to come from the merging of F* and F~.

Here, we generalize the concept of R, by randomly assigning
the n; observations of a unique reflection & (originating from
subsets of a single data collection run, or from two or more data
collection runs with possibly different crystals) to two disjoint sets
PQ with ny,p = int(ny/2) and ny g = n, — nyp members, and
average observations in these sets separately (for simplicity, equa-
tions (5) and (8) use unweighted averages, but in practice weight-
ing with the experimental G values would be most appropriate).
We thus calculate

Rint=

R ZlBr—hol -5
(5) 05*2 Ine + Lo Npp iep
120
and f,o= —— Z I
rlh,Q ieQ
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Fig. 4 Variability of the contribution to R, as a function of resolution.
The distribution is shown for the Ure_1C (open square) and the Ure_123
{x) data sets. The total number of reflections contributing to the Ryqs
sums for the two data sets are 36569 and 525934 reflections, respective-
ly. The fractional contribution of each resolution bin was calculated by
dividing the number of contributing observations in that bin by the
total number of contributing observations for the whole data set.
Although Ure_1C and Ure_123 have nearly identical values in each reso-
lution bin (see fig. 1b), the overall R, of Ure_123 is ~30% larger than
that of Ure_1C (8.1% versus 6.0%) due to the different distribution of
multiplicity. It should be noted that the relative contribution to Ryes iS
not identical to multiplicity because when multiplicity is 1.0, no reflec-
tions contribute to R, In addition to the multiplicity related bias, it
should be noted that all ‘overall’ R-factors have an intrinsic bias in which
the largest reflections have the largest infiuence. Overall R-factors calcu-
lated on F are less influenced by this bias because structure factors have
a much smaller range than intensities.

Iy p and I o represent the partially averaged, and therefore
improved, estimates of the true intensity. The term R 41 is cho-
sen to indicate that this R-factor reflects the quality of the merged
intensities. As for R, the final estimates of the ], may be up to a
factor of \/2 more accurate than R 4 ; indicates. Fig. 2 includes
the properties of R .4y as a function of multiplicity. At a mul-
tiplicity of 4, Ry 1 equals Ry, and the drop seen for Rireq.r
with increasing multiplicity closely matches the expected factor
of \/{n/2).

Most crystallographic calculations, such as phasing and struc-
ture refinement, are carried out using structure factor ampli-
tudes rather than intensities. For this reason, it is also relevant to
know the reliability of the structure factors on a scale useful for
comparisons with the R-factors used for assessing the level of
signal in heavy atom derivatives (R, ), and those used to judge
the progress of model refinement (R » Re,). We suggest that
an R4 calculated using structure factors rather than intensity
data, Rrargd-Fo is an appropriate measure, because it is exactly
analogous to the R-factors R, (or Rg..) and R, between two
data sets A and B:

(6)

cryst

z IFh cale — Fh‘ obs I
h

> Foo
h

_ 2 Fha - Fh,’B]

Rcryst =

180

To overcome the problem of negative intensities for which the
square root is not defined, we suggest the use of pseudo-ampli-

tudes VIifI=0
Ar=
~VTifI<0
solely for use in the R 4 equations?!. Pseudoamplitudes are
not physically meaningful, but they have the desirable property

that even negative reflections contribute to the overall R4 ¢ in
a sensible way. We therefore define

(8)
Rorar= Z IAI“' - AIh.Q |
0.5%% Ay, + Ay,

with Lip and Ih’Q as above

as a measure for the quality of the reduced amplitudes. Once
again, Ry oo f does not reflect the accuracy gain (up to a factor
of \/2) due to merging the P and Q subsets, and thus may
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somewhat underestimate the data quality. Being conservative
and reporting Ry .4 f as the data quality is somewhat like the
convention of reporting d,;, as the resolution limit, even
though it is known that for perfect data the resolution is techni-
cally 0.92* d_, 22

Rirgd-r is a useful quantity as it can be compared with the
many R-factors calculated during the course of a crystallographic
structure solution. Obviously, the quality of the reduced data
limits the accuracy of the final model*>24. In the past, R, has
been used for comparison with R_., and R¥°, but this is not
appropriate. At high resolution, R, is often seen to be much
higher than the final R, ? or Rg*% Ry, can be larger than
the isomophous change in a useful heavy atom derivative?”-2%;
and in a MAD phasing analysis R, can be much higher than
the level of anomalous signal'®. In practice, R, .4 ¢ should pro-
vide an approximate lower limit on Rg,,, the cross-validated
R Which is most useful for evaluating refinement progress
and model accuracy. Such a measure allows one to assess when
phasing accuracy or refinement progress is truly being limited
by the data quality.

As noted above, the values of R .4 are only reliable in the
absence of large systematic differences between subsets of the
data being merged. With R_,,,, now available as a robust indica-
tor of data quality, significant differences between two data sets
will be flagged by merging statistics showing an increase in R ...
compared to the individual subsets. An additional test for sys-
tematic errors is to compare the Rpyreq value for the combined
data (with random assignments to the disjoint sets P and Q),
with an R, calculation between the separately reduced subsets
of data (equivalent to an R . calculation in which the disjoint
sets correspond to the data from two different subsets of data A,
B). Systematic differences between the datasets A,B would (sta-
tistically) cause R, to be higher than R, (provided ny ,,ny, 5
>1 for the common k). In cases for which the difference is small,
merging of datasets is justified and R .4 can be considered a

cryst

mrg
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good estimate of the reliability of the reduced data. We expect
that practical experience with these indicators will be required
to decide how this information is best applied (that is, how
much systematic error is too much).

A recommendation

Based on these observations, we suggest that crystallographic
data reduction and scaling programs should report R ., PCV
and Ry o4 g Rppeqs Will enable crystallographers to better assess
the internal consistency of their measured data sets as well as
the agreement between different data sets; PCV (or R, if
errors are normally distributed) can be used to evaluate
whether the reported <IfG> values match the true scatter in
the measurements (see Box and Fig. 2); and Rmrgd-F is the indi-
cator of the quality of the final merged structure factor ampli-
tudes, and makes direct comparisons with R and R
possible. R .4 5> as 0pposed 10 Ry should be considered as
the most important indicator of final data quality in crystallo-
graphic publications, since it is the reduced data set which is
used to determine structures. Finally, rather than reporting a
single overall value for data quality, it is important to provide
information about data quality as a function of resolution, at a
minimum including separate statistics for the highest resolu-
tion data.
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In addition to allowing a more accurate assessment of data
quality, based on our experience, the use of R;.,; and Ry 095
will reveal that systematic errors between data sets from differ-
ent crystals are often rather small compared to the random
errors, especially in the higher resolution range. This revelation
should stimulate a shift in data collection strategies, so that the
current bias toward using single crystals for complete data sets
whenever possible will shift to favour multiple crystal data sets
which have increased multiplicity and hence more accurate
reduced structure factors. Such a change in strategy has great
potential to improve the quality and completeness of the high
resolution data and serve to enhance the accuracy of details
seen in macromolecular structures.
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insight

Mathematical derivation of the dependance of R, on muitiplicity
As the true intensity }, known, but can be approximated by the average /, of the  ; the variance of the Ryym NuUMerator is related to the
multiplicity ny, of the contributing reflections h. This is shown as follows: reformulating Api= ki — k, the sum of whose absolute values
constitute the numerator of the Ry, formula
1 ny
Abi= Ihi- —3 Inj
ny j
ny

= Ini- —‘(Ihx+ZIhJ)

I =i

we find
ny

1
Ihl— — > It

Ny Dy ASES!

ny

Ani =

As the I, ; and I (jfii) are independent, the variance s, ? of the 4, ; can be calculated as the sum of the variances of the two terms on the
right-hand side of the last eguation:

2
n, -1 1
ShZ = ( b ) Sh2 +(nh ‘1)_25112
n,-1
= Sh
0y
Z(Ih.j-ih)z

i

2

where 5,2, the sample variance of ;, is defined as 5,2 =

1’1 h - 1
However, the root mean square width of a Gaussian G(x) with zero mean is proportionalB®to its average width <Ixl>
2 T 2
<X >= 5 <l xl>

Thus, as the 4, ; are assumed to be normally distributed around a mean of zero,

<Al> = Sap
J%
and therefore
n;, -1
9) .
<|AIJ> = I‘lh
S

7

demonstrating that the contribution of each reflection h to the numerator of Rgym is proportional to a function of its multiplicity ny,. This is
the reason why Rsyrm values for low average multiplicity are overly optimistic, and Ry, as a function of data collection progress (multiplici-
ty) is bound to rise, even if only statistical errors are present.

Relation of Ry,.,., PCV and R, .4, to the average I's ratio of the measured and reduced data
Data reduction programs calculate the estimates of the variance s, 2 for each 1 ; from counting statistics and background level, and most
report the <lfs> ratio as a function of resolution. From a statistical standpoint, the sample variance 5,2 of the Iy,;should be consistent with
these s, 2, if no systematic differences between observations exist2C. In this case, it follows from (9) that both Ry, (EQ. 2) and PCV (Eq. 3)
are related to the inverse of the average signal-to-noise ratio <J/s;> of the observations

Rmeas :PCV/./): 1 <s> = 1 1

z Jh <I> \/’%m—;

Likewise, R4, is related to the average signal-to-noise ratio of the merged intensities .

Rmrgd-l = i —-—-—1—-——_—

Compared to, <Ih/o; >, which rises according to a pure /n law even if systematic errors are present, R, .4 values after merging of non-
isomorphous datasets will be worse than those after merging of datasets without such errors, because the averages of the separate subsets
of data will be distinct.
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erratum

Improved R-factors for diffraction data analysis

in macromolecular crystallography

Kay Diedrichs and P. Andrew Karplus
Nature Structural Biology 4, no. 4, 269-275 (1997).

The Rsym definition on p. 269 should read:

%Z T - Injil o
1 ok 1 .
withly = =X flh-TInj

(I) Rym= o
o, 1

ZZ In,i

h i

(thanks to Clemens Vonrhein for finding the missing summation sign)

The first sentences of the legend for Fig. 2 should read: “The behaviour of data quality indicators as a function of multiplici-

ty. Solid lines are used for the following three indicators: Ry, (filled triangle); PCV (filled square); Ryrga.r (open square). Dashed lines are

used for Rmeas (X); Rinrgar (Open circle); <1/6;> (closed circle).”

In Fig. 2, it should be <1/op> (not <1/s>).

On p. 272, there are only space groups of the form P4, 3,210,112 (10t Pdgg;2320,020,1))-

On p. 275 (box), several typesetting errors make understanding difficult: ;
- . . fog V- oo ety €V |

line 2: “true intensity I,” (note the tilde). As tue true mkeus.{? L, s mot Kuoww, ... < Auothey

lines 9-12: “As the I,; and I; (j #1) (note: not jfii) are independent, the variance s, of the Ay; can be calculated as the sum of the vari-
ances of the two terms on the right-hand side of the last equation:

2

Il - n - . 2

SAhZ = _}_‘___1 shz + (nh - 1) _1_;5},2 = _3__15},2 7 (note: this defines say?, not s,?)
ny ny’ 1y

The final paragraph on p. 275 should start as follows:

Relation of Rieas » PCV, and Ryygq.1 to the average 1/0 ratio of the measured and reduced data
Data reduction programs calculate the estimates of the variance of 6y, for each I; from counting statistics and background level, and
most report the <I/o> ratio as a funciton of resolution. From a statistical standpoint, the sample variance s’ of the Iy ; should be con-
sistent with these 6,7, if no systematic differences between observations exist®”. In this case, it follows from (9) that both Rmeas (eqn.
2) and PCV (eqn. 3) are related to the inverse of the average signal-to-noise ratio <I/G;> of the observations. {Note the s versus 6 con-
fusion in the article as printed]

Update: Reference 10 is Weiss, M.S. & Hilgenfeld, R. J. Appl. Cryst. 30, 203-205 (1997).




