Complete Ion-Coordination Structure in the Rotor Ring of Na+-Dependent F-ATP Synthases

Thomas Meier1,2⁎, Alexander Krah3†, Peter J. Bond3†, Denys Pogoryelov1, Kay Diederichs4 and José D. Faraldo-Gómez2,3⁎

1Department of Structural Biology, Max Planck Institute of Biophysics, Max von Laue Strasse 3, 60438 Frankfurt am Main, Germany
2Cluster of Excellence Macromolecular Complexes, Max Planck Institute of Biophysics, Max von Laue Strasse 3, 60438 Frankfurt am Main, Germany
3Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Max von Laue Strasse 3, 60438 Frankfurt am Main, Germany
4Department of Biology, University of Konstanz, 78457 Konstanz, Germany

Received 4 May 2009; received in revised form 28 May 2009; accepted 29 May 2009
Available online 3 June 2009

Edited by J. Bowie

Keywords: F1F0-ATP synthase rotor; c-ring structure; ion coordination and selectivity; sodium-motive force; Ilyobacter tartaricus

Introduction

Adenosine triphosphate (ATP) is the universal energy currency in all living cells, sustaining many and diverse biochemical reactions and processes. F-type ATP synthases are the main producers of ATP; these large protein complexes are found in the membranes of mitochondria, chloroplasts, and bacteria, and power their enzymatic activity with the dissipation of electrochemical gradients across these membranes. Remarkably, these enzymes can also operate in reverse and act as transmembrane ion pumps, thereby using the energy derived from the hydrolysis of ATP to establish a concentration gradient.

Structurally, F-type ATP synthases comprise two distinct subcomplexes referred to as F1 and F0. While the synthesis or hydrolysis of ATP takes place in the water-soluble F1 region,1,2 the membrane-embedded F0 complex acts as a rotor that is coupled to the translocation of protons or sodium ions across the membrane. The bacterial F0 complex

⁎Corresponding authors. E-mail addresses: thomas.meier@biophys.mpg.de; jose.faraldo@biophys.mpg.de.
† A.K. and P.J.B. contributed equally to this work.
Abbreviations used: PDB, Protein Data Bank; MD, molecular dynamics; POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; smf, sodium-motive force; pmf, proton-motive force.
Na+ Coordination in the ATP Synthase Rotor

consists of three membrane-anchored subunits with a stoichiometry of ab\textsubscript{2}c\textsubscript{10}. The c-subunits form a ring-like structure, with subunits a and b assembled laterally. Both F\textsubscript{1} and F\textsubscript{o} complexes can be seen as individual molecular motors connected by a central bearing (γ-subunit) that acts as a transducer of mechanical energy between them (for reviews, see Capaldi and Aggerberg,3 Yoshida et al.,4 and Nakamoto et al.).5

The mechanism that couples the transmembrane movement of protons or sodium ions to the rotation of the c-ring is not fully understood. Biochemical studies, though, have clearly shown that cations (Na+) do bind to the c-ring.6,7 The crystal structure of the rotor from the \textit{Ilyobacter tartaricus} Na+-dependent ATP synthase provided atomic detail to this notion.8 In this structure, each c-subunit consists of two α-helices connected by a short cytoplasmic loop, with the N-terminus and C-terminus located in the periplasm. The ring comprises 11 subunits, which form a symmetric hourglass-shaped assembly. In between each pair of adjacent subunits, a Na+ binding site can be clearly identified. The coordination shell for this ion is composed of the side-chain oxygen atoms of Gln32 and Glu65 of one subunit and, from the adjacent subunit, the hydroxyl oxygen of Ser66 and the backbone carbonyl oxygen of Val63. Notably, Glu65 acts not only as one of the four Na+-binding ligands but also as an acceptor of three hydrogen bonds from the amine and hydroxyl groups of Gln32, Ser66, and Tyr70, respectively. This arrangement, present in all 11 binding sites, appears to provide a stable locked conformation of the site, where the interaction of Na+ with protein ligands, especially Glu65, compensates for the energetic cost of its desolvation and transfer into the membrane. It also follows from this observation that ion exchange within the a/c interface during enzyme activity is likely to be accompanied by conformational changes in the binding site.9 In particular, a reversible interaction with a positively charged arginine in the stator subunit a\textsubscript{9,10} is believed to be crucial for the sequential loading and unloading of the binding site as the c-ring rotates.11

An almost identical coordination structure was found in the crystal structure of the K-ring of the V-type ATPase from \textit{Enterococcus hirae}.12 In this enzyme, the K-ring also acts as a rotary subunit powered by ATP hydrolysis, thereby pumping Na+ across the membrane. Intriguingly, however, the K-ring was found to contain an additional fifth coordinating site, namely, the side-chain carbonyl of Gln65. At physiological pH, both the \textit{I. tartaricus} ATP synthase13 and the \textit{E. hirae} ATPase preferentially select Na+ during enzyme operation.14 This means that the binding sites of both c-ring and K-ring must be selective against all other cations under such conditions. Indeed, available data indicate that they are and to a similar degree.5,6,7,13–15 Considering how slight are the differences between these cations (e.g., Na+ and K+ differ by less than 0.4 Å in radius), it seems odd that the lack of one coordination site in the \textit{I. tartaricus} c-ring would result in no functional difference with the K-ring from \textit{E. hirae}. Moreover, a recent survey of Na+ binding sites in the Protein Data Bank (PDB; selective and nonselective) shows that the most prominent coordination number is 5, consistent with the observation for the K-ring, while a coordination number of 4 is about twofold less frequent.16

Prompted by these considerations, we set out to reexamine the crystallographic data for the \textit{I. tartaricus} c-ring, and we report here the existence of additional electron density within the coordination shell of all Na+ in the structure. This density appears to correspond to a water molecule buried between Na+ and the inner α-helix. To examine this hypothesis further, we employ molecular dynamics (MD) simulations of the complete c-ring embedded in a lipid membrane and calculations of the binding affinity of this structural water. The results from these calculations are clearly consistent with the notion that a buried water molecule is the fifth coordinating ligand for Na+. Further computations are presented to illustrate the importance of this fifth site for the selective ion-binding properties of the rotor in ATP synthases.

Results

Crystallographic analysis of the Na+ binding site

During the process of solving the original structure of the c-ring from \textit{I. tartaricus},8 513 electron density peaks were assigned to crystalline water molecules (PDB ID code 1yc). A total of 44 bound Na+ ions, 11 in each of the four rings in the asymmetric unit, could also be clearly identified through valence screening.17 In some regions, however, the electron density derived from the diffraction data could not be interpreted with confidence. Intriguingly, several of these unassigned peaks were observed in close proximity to the bound Na+, but this density was apparent only in a fraction of the sites (Fig. S1). Given this and the resolution limit of the data, at 2.4 Å, the interpretation of this density was uncertain. Thus, at the time, it was concluded that the coordination shell of Na+ was limited to four oxygen ligands from the protein, as explained previously.

In view of the coordination structure observed in the V-ATPase K-ring from \textit{E. hirae}12 and bearing in mind recent statistical surveys of metal coordination in proteins,19,20 this conclusion deserves further examination. Specifically, it appears plausible that the weak electron density that was detected in the vicinity of the bound Na+ in the c-ring corresponds to an additional coordination site, presumably in the form of a water molecule. To evaluate this hypothesis, we decided to recalculate the structure from the original X-ray diffraction data, using the latest available versions of crystallography software for data reduction and refinement. The final model has
Table 1. Summary of data collection and refinement statistics

<table>
<thead>
<tr>
<th>Data processing</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (Å)</td>
<td>0.9756</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁</td>
</tr>
<tr>
<td>Unit cell parameters a, b, c (Å)</td>
<td>146.7, 139.3, 151.9</td>
</tr>
<tr>
<td>Unit cell parameters α, γ, β (°)</td>
<td>90, 90, 118.4</td>
</tr>
<tr>
<td>Solvent content (%)</td>
<td>66.1</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>40.0</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.9756</td>
</tr>
<tr>
<td>Number of observed reflections</td>
<td>2,424,596 [178,827]</td>
</tr>
<tr>
<td>Number of unique reflections</td>
<td>220,545 [23,835]</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>98.7 [91.2]</td>
</tr>
<tr>
<td>Rmerge (%)</td>
<td>18.2 [117.1]</td>
</tr>
<tr>
<td>Rmerge−F (%)</td>
<td>18.3 [117.6]</td>
</tr>
<tr>
<td>I/σI</td>
<td>8.83 [1.77]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Refinement statistics</th>
<th>40.0–2.35 [2.38–2.35]</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-factor (%)</td>
<td>22.0 [34.0]</td>
</tr>
<tr>
<td>Rmerge (%)</td>
<td>24.5 [38.3]</td>
</tr>
<tr>
<td>Number of residues</td>
<td>3916</td>
</tr>
<tr>
<td>Number of solvent waters</td>
<td>423</td>
</tr>
<tr>
<td>Number of ions</td>
<td>44</td>
</tr>
<tr>
<td>Number of fatty acid chains</td>
<td>44</td>
</tr>
<tr>
<td>RMSD of bond length (Å)</td>
<td>0.012</td>
</tr>
<tr>
<td>RMSD of bond angles (°)</td>
<td>0.704</td>
</tr>
<tr>
<td>Average RMSD of main-chain [side side-chain] atom positions between the old model (PDB ID code 1ycc) and the new model (PDB ID code 2vgm) (Å)</td>
<td>0.39 [0.48]</td>
</tr>
</tbody>
</table>

Numbers in brackets correspond to the highest-resolution shell.

a resolution of 2.35 Å; the resulting statistics from this updated analysis are summarized in Table 1.

Figure 1 shows the Na⁺ binding site in this improved structure of the c₁-ring from I. tartaricus ATP synthase. With regard to the protein ligands, the coordination structure of the cation is essentially identical with that previously reported, and the conformations of all side chains in and near the site are unequivocal. Importantly, the additional density in the vicinity of the ion can now be unambiguously discerned in all binding sites in the unit cell, as shown for one complete c-ring (Fig. 1b and c). Based on geometric considerations (Table 2), this density indeed appears to correspond to a buried water molecule, which not only coordinates Na⁺ and therefore completes the 5-coordination shell but also is an integral part of the structure of the site as it forms hydrogen bonds with the carbonyl oxygen of Ala64 and with the hydroxyl oxygen of Thr67.

MD and free-energy calculations

To complement the crystallographic analysis, we provide three pieces of evidence derived from atomically detailed MD simulations of the full c-ring embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane (~100,000 atoms). The first of these arguments is the binding affinity of the water molecule that, as we proposed, coordinates Na⁺. To calculate this quantity, we follow an approach that has been previously used for the bacteriorhodopsin proton channel. That is, we computed the free-energy cost of extracting a water molecule from the bulk solution and the free energy gained by inserting it into the site identified in the electron density map of the protein crystal. These values are −ΔG_bulk = 6.5 ± 0.1 kcal/mol and ΔG_site = −12.6 ± 0.2 kcal/mol, respectively. From these values, we can now derive the standard binding free energy ΔG° using the expression:

ΔG° = ΔG_site − ΔG_bulk − k_BT log(C_site/C_bulk)

where k_B is the Boltzmann constant and T is the temperature (298 K). The last contribution in the equation above reflects loss of translational entropy upon binding, which is defined in terms of the accessible volume for the ligand at the site V_site relative to the standard state volume 1/C°² = 1661 Å³. From the extent of the motions of the water molecule at the binding site during our simulations, we estimate that V_site = 4.2 Å³ (i.e., this entropic penalty is 3.6 kcal/mol). The resulting binding free energy is therefore −2.5 ± 0.2 kcal/mol, that is to say, K_d = exp(ΔG°/k_BT) = 15 mM. This dissociation constant can be related to the probability of occupancy:

P_o = [1 + K_d/a_wC]⁻¹

where C = 55.5 M is the concentration of water, and a_w is water activity. Under ideal conditions, a_w = 1 and, therefore, P_o ~ 0.9997. In the crystallization cryobuffer, a_w is only slightly reduced to ~0.95, and so P_o is unchanged (within four decimal digits). We thus conclude that, at least from a thermodynamic standpoint, the presence of this water molecule in the binding site is unequivocal.

The second line of evidence derives from conventional MD simulations of the complete sodium-loaded c-ring in the presence and in the absence of the coordinating water molecule. These simulations reveal that, in the absence of the key water molecule, the side chain of Thr67 would effectively become the fifth site. Although this rotamer is not consistent with the notion that Thr67 adopts rotamer A (Fig. 2b) and would effectively become the fifth site. Although this finding is intriguing, analysis of the electron density maps of the isolated c-ring of I. tartaricus is not consistent with the notion that Thr67 adopts rotamer B. Given that the interconversion rate between these rotamers is likely to be faster (nanoseconds) than the fastening of the protein
crystals in liquid nitrogen, one would certainly expect to detect electron density for rotamer B if such state were to exist.

By contrast, the simulation of the c-ring that includes the water molecule in the cation site reveals absolutely no exchange between rotamers in Thr67 for any of the binding sites, consistent with the electron density. Rather, the hydroxyl oxygen of Thr67, along with the carbonyl of Ala64, provides robust hydrogen-bonding interactions that help to orient the molecular dipole of the water in a way that is optimal for the coordination of Na\(^+\) and appears to help sustain the overall structure of the coordination shell.

Fig. 1. The Na\(^+\) binding site in the c\(_{11}\)-ring from *I. tartaricus* ATP synthase. (a) The ring is composed of 11 c-subunits, each comprising two transmembrane helices shown as gray ribbons. The binding sites for Na\(^+\) (yellow spheres) are located in between adjacent subunits. (b) Nonsymmetrized electron density peaks (2\(F_{\text{obs}}\)-\(F_{\text{calc}}\) map at 1.8\(\sigma\)) corresponding to buried structural water molecules (blue spheres) that coordinate Na\(^+\) (yellow spheres). The view is of a slice of density parallel with the plane of the membrane. (c) Close-up and electron density map of the Na\(^+\) binding site (2\(F_{\text{obs}}\)-\(F_{\text{calc}}\) map at 1.8\(\sigma\)) from the same viewpoint as the rectangle in (a). The amino acids involved in ion coordination are depicted in stick representation. Thr67 and Ala64 are also indicated (see Results). Ion–protein contacts and the network of hydrogen bonds in the site are indicated with broken lines.
Our third and final argument derives from free-energy calculations of the cation selectivity of the binding site. For these calculations, we adopt an approach analogous to that in previous studies of selective ion channels and ion-coupled membrane transporters. That is, we construct a thermodynamic cycle that allows us to express the free energy of selectivity between two cations, \(\Delta \Delta G_{\text{sel}} (C_1^+ \rightarrow C_2^+) \), in terms of the energy cost or gain upon a nonphysical transformation between them, both at the binding site and in the bulk:

\[
\Delta \Delta G_{\text{sel}} (C_1^+ \rightarrow C_2^+) = G_{\text{site}} (C_1^+ \rightarrow C_2^+) - G_{\text{bulk}} (C_1^+ \rightarrow C_2^+)
\]

Further details, including a comparison of computed and measured selectivity free energies for the K-ring of the V-ATPase from E. hirae, can be found in Materials and Methods and Supplementary Data. Using the same approach and force-field parameters for the I. tartaricus c-ring, we assess whether the water molecule in question is required to yield the correct selectivity. Based on the results shown in Table 3, we conclude that this is indeed the case. By contrast, the selectivity values computed in the absence of the coordinating water cannot be reconciled with experimental observations. Specifically, competitive binding assays based on inhibition of ATPase activity through DCCD labeling of Glu65\(^\gamma\) indicate that the selectivity against K\(^+\) should be greater than +3.7 kcal/mol (or \(K_d / K_p > 500 \)). An analogous threshold can be derived for the V-ATPase K-ring, which shows no K\(^+\) binding even at a 1000-fold concentration excess over Na\(^+\) (i.e., \(\Delta \Delta G_{\text{sel}} > 4.1 \) kcal/mol). The computed value of 2.5 kcal/mol in the absence of the water molecule is well below this lower-bound estimate. Similarly, the selectivity against Li\(^+\) in the absence of the coordinating water is significantly reduced relative to the experimental estimate of 1.4 kcal/mol (i.e., 10-fold smaller affinity than Na\(^+\)). Taken altogether, we conclude not only that there is a fifth coordination site for Na\(^+\) in the form of a water molecule but also that this additional ligand is crucial for the selectivity properties of the c-subunit.

Discussion

In this study, we have complemented crystallographic data with \textit{in silico} methods to unequivocally demonstrate that a buried water molecule provides a fifth interaction site for Na\(^+\) in the rotor subunit of the F-type ATP synthase from \textit{I. tartaricus}. This finding allows us to reconcile the ion selectivity properties of this ring with the chemical structure of the binding site (Fig. 3). The interaction of this key water molecule with Thr67 also provides new insights into the complex question of what distinct chemical and structural features determine Na\(^+\) versus H\(^+\) coupling in ATP synthases—that is to say, into the evolutionary transition between cellular bioenergetics driven by the sodium-motive force (smf) and the proton-motive force (pmf). To date, only four ATP synthases have been shown biochemically to be coupled to Na\(^+\) transport, all of which are found in anaerobic bacteria. The first ATP synthase of this type was discovered in the bacterium \textit{Propionigenium modestum} and, subsequently, also in \textit{Acetobacterium woodii}, \textit{I. tartaricus}, and \textit{Clostridium paradoxum}. Nonetheless, the smf has been recently postulated as the ancestral type of membrane energy metabolism, as it would be advantageous over the pmf in high pH environments or at high temperatures. Therefore, the structure of the Na\(^+\)-binding c-ring presented here provides us with an insight into a strategy for ATP synthesis that was already present in the early history of life, rather than simply an unusual adaptation of a minor fraction of exotic bacterial strains.

In Fig. 4, we have aligned the amino acid sequences of the c-subunits in all known Na\(^+\)-dependent species alongside those representative of their H\(^+\)-coupled homologues (and of the K-ring from \textit{E. hirae}). From this comparison, it is clear that there exists a sequence signature in the binding sites of the Na\(^+\)-dependent c-subunits, namely, Gln32, Glu65, Ser/Thr66, Thr67, and Tyr70 (\textit{I. tartaricus} numbering). This observation is consistent with the structure of the \textit{I. tartaricus} c-ring\(^8\) and also with mutagenesis data for the closely related \textit{P. modestum}. However, it is also clear that among these amino acids, only Thr67 is distinctive of the sodium-dependent subfamily. In all of the known proton-coupled ATP synthases such as those from spinach chloroplasts or from the cyanobacterium \textit{Synchocystis} sp. strain PCC 6803, Thr67 is replaced by a hydrophobic bulkier amino acid. This substitution very likely precludes the presence of a water molecule in the binding site and would therefore limit the number of possible coordinating ligands, which may contribute to their specificity. It will be therefore very interesting to elucidate the unknown ion-binding properties of putative ATP synthases.

Table 2. Interatomic distances at the Na\(^+\) binding site of the \textit{I. tartaricus} c-ring

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Distance (Å)</th>
<th>RMSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na(^+)</td>
<td>Glu32 O(^\gamma)</td>
<td>2.39</td>
<td>0.09</td>
</tr>
<tr>
<td>Na(^+)</td>
<td>Val63 O</td>
<td>2.38</td>
<td>0.09</td>
</tr>
<tr>
<td>Na(^+)</td>
<td>Glu65 O(^\gamma)</td>
<td>2.48</td>
<td>0.10</td>
</tr>
<tr>
<td>Na(^+)</td>
<td>Ser66 O(^\gamma)</td>
<td>2.26</td>
<td>0.10</td>
</tr>
<tr>
<td>Na(^+)</td>
<td>HOH</td>
<td>2.37</td>
<td>0.14</td>
</tr>
<tr>
<td>HOH</td>
<td>Thr67 O(^\gamma)</td>
<td>2.75</td>
<td>0.11</td>
</tr>
<tr>
<td>Glu65 O(^\gamma)</td>
<td>Ala64 O</td>
<td>2.79</td>
<td>0.11</td>
</tr>
<tr>
<td>Glu65 O(^\gamma)</td>
<td>Gln32 N(^\gamma)</td>
<td>2.83</td>
<td>0.02</td>
</tr>
<tr>
<td>Glu65 O(^\gamma)</td>
<td>Tyr70 O</td>
<td>2.77</td>
<td>0.04</td>
</tr>
<tr>
<td>Gly25 O</td>
<td>Thr67 O(^\gamma)</td>
<td>2.67</td>
<td>0.03</td>
</tr>
<tr>
<td>Ser66 O(^\gamma)</td>
<td>Glu65 O(^\gamma)</td>
<td>2.60</td>
<td>0.04</td>
</tr>
</tbody>
</table>

* The values shown are averages, with the corresponding RMSD taken over the 11 sites present in each ring and the four rings found in the asymmetric unit cell. Structural refinement was carried out without noncrystallographic symmetry restraints on Na\(^+\) and HOH positions. The distances between Na\(^+\) and surrounding atoms were also not restrained (default van der Waals repulsion forces were switched off) and were therefore unbiased.
that also include a threonine residue at this position, such as the human pathogenic family of Mycoplasma strains (Fig. 4). The bacteria having this threonine in their c-subunit sequences belong to different phyla (Fusobacteria, Firmicutes, Tenericutes, and Thermo-
togae) whose only common characteristic is that they grow anaerobically in rather Na+-rich environ-
ments. It is also intriguing that in some species such as Thermotoga maritima, Gln32 is replaced by Glu. It seems plausible, at least statistically speaking, that this arrangement would also be well suited for Na+ coordination and hence that the ATP synthase of some of these species is driven by the smf rather than the pmf. Conclusive biochemical data for these cases are still missing.

Finally, it is worth noting that mutants of Gly25 and Thr67 (Fig. 3b) to isoleucine and cysteine, respectively, have been shown to abolish ATP synthesis by purified enzymes reconstituted into proteoliposomes. This underlines their functional and physiological importance in Na+-dependent ATP synthases. The results in that study were interpreted as indicative of a hypothetical interaction between Thr67 and a conserved key arginine residue on the a-subunit interface. In the light of this study, however, it is also plausible that these mutants display a diminished ion-binding capacity or altered selectivity properties. Such an effect has indeed been observed, for example, in mutagenized rings of the proton-coupled Escherichia coli ATP synthase. In this case, residues 60–63 were changed from Val-Asp-Ala-Ile to Ala-Asp-Ser-Thr, corresponding to residues 64–67 in I. tartaricus. Although this mutant enzyme could not transport or bind Na+, it was
certainly inhibited by Li\(^+\). At any rate, the side chain at position 67 and the coordinating water molecule (Fig. 3b) are two key elements that need to be considered from now on in order to elucidate the mechanism of Na\(^+\) translocation through the F\(_o\) complex and to understand how this process powers ATP synthesis at the molecular level.

Materials and Methods

Crystallographic analysis

The improved structure of the *I. tartaricus* c\(_{11}\)-ring originates from the same diffraction data set for which details were reported in Meier *et al.*\(^8\) These data were re-reduced, for the present work, with the latest XDS version (January 2009).\(^9\) Refinement was initiated using the c\(_{11}\)-ring model from PDB ID code 1yce, representing the final result of Refmac\(^{10}\) refinement in 2004. Algorithmic improvements, most importantly a more stable TLS model and a more realistic solvent modeling in PHENIX.refine,\(^{41}\) allowed a slightly wider resolution range (40–2.35 Å). The same set of reflections selected for the calculation of free R-factors was used as established for PDB ID code 1yce. In order to prevent bias in the identification of the electron density corresponding to the 44 additional water binding sites in the same asymmetric unit, we first refined without imposing any noncrystallographic symmetry. After an unambiguous identification of the additional waters, they were included in the model in the last rounds of the refinement. The R\(_{\text{work}}\) and R\(_{\text{free}}\) values of the model against the data do not rise steeply near the high-resolution cutoff, attesting to its correct choice and consistent with an I/\(\sigma_I\) value significantly higher than 1.

MD and free-energy calculations

All MD simulations and free-energy calculations were carried out with NAMD\(^{42}\) using the CHARMM27 force field,\(^{43}\) at constant temperature (298 K) and pressure.
(1 atm), under periodic boundary conditions. Electrostatic interactions were computed using the particle-mesh Ewald algorithm with a real-space cutoff distance at 14 Å, which was also used for van der Waals interactions. Simulations of bulk systems included 1000 molecules in a cubic box of ~31 Å on each side, pressure-coupled isotropically. In the protein–lipid system, the pressure was applied only along the membrane normal, while the surface area of the membrane (POPC) was kept constant (∼69 Å² per lipid). The simulation of the complete c-ring in the POPC membrane was prepared using the methodology described by Faraldo-Gómez et al., now implemented into NAMD.44 This model comprises 237 POPC lipids and approximately 18,000 water molecules in addition to the protein (i.e., a total of ∼100,000 atoms) (Fig. S2). To equilibrate this molecular model, we carried out conventional MD simulations with gradually weaker constraints on the protein structure for up to 10 ns. Subsequent unrestrained simulations of 15 ns duration were used for analysis and as starting point for free-energy calculations. The free-energy perturbation method was used in the calculations of water binding affinity and ion selectivity. As is common, we followed a stepwise protocol, through a coupling parameter λ in the forward and backward directions. Between 25 and 30 intermediate λ steps were used in each case, with sampling times ranging between 200 ps and 1 ns per step. A pseudo-soft-core potential was used in the calculations of water binding affinity, with a cutoff at 1.3 Å. Parameters for the c-ring were derived from Noskov and Roux18 and very slightly adjusted to better match relative hydration-free energies as computed under our simulation conditions, as well as the ion selectivity measurements for the K-ring.17 Further details are given in Supplementary Data (Fig. S3).

Accession numbers

Coordinates and structure factors have been deposited in the PDB with accession number 2wgm.

Acknowledgements

This work was supported, in part, by the Cluster of Excellence “Macromolecular Complexes” at the JW Goethe University Frankfurt (DFG project EXC 115) and the DFG (German Research Foundation). P.J.B. was supported by an EMBO fellowship (ALTF 1021-2007).

Supplementary Data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jmb.2009.05.082.
References

two cyanobacterial strains is four. FEBS Lett. 379, 309–313.

