Molecular insights into the self-assembly mechanism of dystrophia myotonica kinase

Pilar Garcia,* Zöhre Ucurum,* Rainer Bucher,* Dmitri I. Svergun,† Thomas Huber,† Ariel Lustig,* Petr V. Konarev,† Marco Marino,* Olga Mayans*,

*Division of Structural Biology, Biozentrum, University of Basel, Basel, Switzerland; †European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia; and ‡Biochemisches Institut, Universität Zürich, Zürich, Switzerland

ABSTRACT Self-assembly via coiled-coil domains (CC) is crucial for the regulation of the dystrophia myotonica kinase (DMPK) -related family of kinases. These CC domains are thought to form dimeric arrangements and thus to mediate dimerization in these enzymes. Using size exclusion chromatography combined with multiantiangle static light scattering, we analyzed the oligomeric state of DMPK as well as that of a truncated variant lacking the CC fraction. Remarkably, both forms were found to assemble into robust dimers. In contrast, the CC domain in isolation yielded trimeric assemblies, indicating that the oligomerization properties of CC domains from this kinase family are more diversified than anticipated. The crystal structure of this CC has been elucidated to 1.6 Å resolution and its properties in solution established using sedimentation equilibrium and thermal denaturation. These data show that, contrary to expectations, the self-assembly of DMPK is not dictated by the association properties of its CC domain. Instead, it appears to be driven by sequence segments flanking both N and C termini of the catalytic kinase fraction, as suggested by models of head-to-head dimers based on small angle X-ray scattering data. Our findings support a shared pattern of assembly across DMPK, ROCKs, and MRCK members of this family.—Garcia, P., Ucurum, Z., Bucher, R., Svergun, D. I., Huber, T., Lustig, A., Konarev, P. V., Marino, M., Mayans, O. Molecular insights into the self-assembly mechanism of dystrophia myotonica kinase. *FASEB J.* 20, 1142–1151 (2006)

Key Words: kinase · coiled-coil · protein assembly · protein structure · X-ray crystallography · multiantiangle static light scattering · small angle X-ray scattering

Self-assembly is a main feature of the dystrophia myotonica kinase (DMPK) -related family of kinases. These complex multidomain kinases share a highly conserved catalytic domain and a coiled-coil fraction (CC) involved in the regulation of their activity. To this group belong DMPK (1, 2), Rho-associated kinases I and II (ROCKI/II, also known as β and α, respectively) (3, 4), C. elegans LET-502 (5), Drosophila Genghis Khan kinase (Gek) (6), murine citron kinase (7), and rat Cdc42 binding kinase (MRCK) (8), among others. Most of these kinases act as effectors of small Rho GTPases (Rho, Rac, and Cdc42 subclasses) known to regulate cytoskeletal dynamics. Accordingly, several members of the family are functionally linked to cytoskeletal reorganization events, as illustrated by the involvement of Gek in actin polymerization (6) and the role of citron kinase, LET-502, and ROCKII in regulating the cleavage furrow contraction during cytokinesis (9–11).

DMPK is regarded as the defining member of this kinase family. It is most closely related to MRCK and ROCKs, with which it shares sequence similarity across the N-terminal catalytic fraction but not across CC moieties (Fig. 1). By analogy to other family members, DMPK is suspected to regulate cytoskeletal events (12, 13) and may act as a downstream effector in the regulatory pathways of RhoA (12) and Rac1 (14). Other reports, however, defend that DMPK intervenes in the modulation of the electrical excitability of the plasma membrane (15, 16). Taken together, functional data suggest that DMPK might be related to muscle stiffness and hyperexcitability, heart conduction defects, and cognitive deficit in a progressive neuromuscular disorder known as myotonic dystrophy (DM1), which is the most common form of muscular dystrophy in adults (17). DM1 patients suffer from DMPK insufficiency due to the retention of mRNA transcripts in the nucleus (18, 19). However, it is not currently understood how low levels of this kinase affect cellular function, and thus its involvement in disease remains polemic.

Oligomerization via CC segments is thought to be central to the regulation of DMPK-related kinases. CC motifs consist of two to five amphipathic α-helices that wind around each other to form, typically, a left-handed supercoil. They mediate self-assembly events in proteins but can also be implicated in refolding processes and molecular recognition (for a recent review, see ref 20). CC sequences are characterized by a repeat
pattern of seven amino acids denoted \(a\) to \(g\). Positions \(a\) and \(d\) classically harbor hydrophobic residues, which constitute the structural core of the motif. Positions \(e\) and \(g\) often host charged groups that form networks of intra- and interhelical salt bridges crucial to fold stability and interchain recognition. CC domains from DMPK-related kinases are believed to form dimeric assemblies and thereby to mediate dimerization in these enzymes. To date, only two closely related CC fragments from this family have been characterized. These correspond to the C-terminal, Rho binding motifs of ROCKII-CC and ROCKI-CC that share 52% sequence identity (Fig. 1). For these, crystal structures have been reported in free form (21) and complexed to RhoA (22), respectively, confirming that both coils form parallel dimers. In a similar way, only a few analytical studies have reported on the oligomerization state of full-length kinases. Currently, data are available only for DMPK (23) and ROCKs (24, 25), which have been shown to adopt dimeric states. Despite the similarity of these kinases, different mechanisms have been proposed for their dimerization. While data on DMPK defended a self-assembly driven by its CC motif (23), the reports on ROCKs prove that CC moieties are not required for their oligomerization. The latter agrees with a biochemical study of MRCK, which also reported self-association in the absence of CC fractions (26). On the contrary, the CC fraction of DMPK (DMPK-CC) has been proposed to act as an enhancer of its kinase activity (25), although it is unknown whether this involves transphosphorylation events as those observed in tyrosine kinases. In summary, both the functionality of CC domains from this family and the extent to which they govern molecular assembly remain unclear. Given that the CC from DMPK appears to differ from those of ROCKs and MRCK both in its regulatory properties and in its role during assembly (23), we have investigated the architectural details of DMPK to assess whether a common association principle exists in this family of kinases.

MATERIALS AND METHODS

Cloning

Expression constructs were derived from human DMPK cDNA (L08835) spanning residue ranges as shown in Fig 1. DMPKΔVR was cloned into the EcoRI and SaI sites of the insect cell expression vector pFastBac1 (Invitrogen, San Diego, CA, USA). A His\(_6\)-tag and a TEV (tobacco etch virus) protease cleavage site were inserted N-terminal to the target protein. Cloning of DMPK-CC has been previously reported (28). DMPK-CC\(_{N^+}\) was cloned into the pET-15b (Novagen, Madison, WI, USA) using primers 5’-GGATTTCCATA-TGTCAAGCCGAGGTTGGG-3’ and 5’-CGGGATCTTACCCCGTGACACGCTGGG-3’ with NdeI and BamHI restriction sites, respectively. This vector adds a His\(_6\)-tag and a thrombin cleavage site N-terminal to the expression construct. DMPKΔCC/VR was cloned into pET-15b (Novagen, Madison, WI, USA) using primers 5’-CTCTCGAGATATGTTCCATGTTTACCTGCA-3’ and 5’-CTCTCGAGTTACCTGTCGACACGCTGGG-3’ with NheI and BamHI restriction sites, respectively. This vector adds a His\(_6\)-tag and a thrombin cleavage site N-terminal to the target protein. Cloning of DMPK-CC has been previously reported (28). DMPK-CC\(_{N^+}\) was cloned into the pETM-11 vector, a modified version of pET-24d (Novagen) that includes a His\(_6\)-tag plus a TEV (tobacco etch virus) protease cleavage site N-terminal to the target protein. Cloning of DMPK-CC was previously reported (28).

Protein production

Sf9 cells were transfected with the bacmic cDNA construct of DMPKΔVR according to the manufacturer’s instructions.
(Life Technologies Bac-to-Bac system). The transfected cells were incubated for 3 days at 27°C and the supernatant, containing recombinant virus for protein expression, was collected. Amplified virus (10 ml) was added to 1 × 10⁶ S99 cells and incubated at 27°C for 3 days. Lysis was performed by incubation on ice for 30 min in the presence of DNase and protease inhibitors (Complete EDTA-free; Roche, Nutley, NJ, USA) in 50 mM Tris pH 8.0, 300 mM NaCl, 5 mM β-mercaptoethanol, 2% glycerol. A clarified supernatant was obtained by centrifugation at 20,000 rpm and 4°C for 1 h. The protein product was purified by affinity chromatography on a His-Trap HP column (GE Healthcare) equilibrated in lysis media. The bound protein was eluted by supplementing the medium with 200 mM imidazole. Subsequent purification used size exclusion chromatography on a Superdex 200 Tricorn 10/30 GL column (GE Healthcare) in 50 mM Tris pH 8.0, 150 mM NaCl, 5 mM β-mercaptoethanol, 2% glycerol.

DMPKΔCC/VR was expressed in E. coli Rosetta (DE3) (Novagen) grown in LB medium supplemented with 34 µg/ml of chloramphenicol and 100 µg/ml ampicillin. Induction used 1 mM IPTG and incubation was overnight at 25°C. Cells were harvested by centrifugation at 8000 g at 4°C for 15 min. Lysis was by French pressing in the presence of DNase and protease inhibitors in 50 mM Tris pH 8.0, 50 mM NaCl, 5 mM β-mercaptoethanol. The clarified supernatant, obtained by centrifugation at 20,000 rpm (4°C), was purified by affinity chromatography and subsequent gel filtration (as described for DMPK3VR) in lysis media. Expression and purification of DMPK-CC were as reported (28). Production of DMPK-CCN⁻ had protocols as for DMPK-CC, except that all media were supplemented with 5 mM β-mercaptoethanol. All measurements used fresh preparations and sample identification was by peptide-digest mass spectrometry.

Structure determination

Crystallization, data collection, data statistics, and experimental phasing of DMPK-CC have been described (28). Briefly, crystals grew from 100 mM Tris-HCl pH 7.5, 2.0 M Na⁺/K⁺ tartrate and 5–10 mg/ml protein solutions. X-ray diffraction data collected at beamline ID14-2 (ESRF, Grenoble) revealed the crystals to belong to space group P2₁2₁2₁ with unit cell dimensions of a = 39.1 Å, b = 46.2 Å, c = 143.5 Å, and three polypeptide chains per asymmetric unit. Experimental phasing using ŠAD MAD on an Se-Met derivative. Phase refinement was in SHARP (29) and automatic model improvement in ARP/warp v6.1 (30). Manual model building used the software O (31) and refinement was in REFMAC (32). For cross-validation, crystallographic data were divided into a working and a test set using FREERFLAG (33). Restraints for non-crystallographic symmetry were applied during the initial phase of refinement and released at later stages. Geometrical parameters of intermediate and final models were assessed using PROCHECK (34). The final model lacks several N- and C-terminal residues that could not be resolved in electron density maps, namely 461–465/530–537 in chain A, 461–463/528–537 in chain B and 461–465/527–537 in chain C. This amounts to ~20% of disorder in the structure and explains the slightly elevated R-factor values, which are somewhat above those characteristic of this resolution. Coordinates have been deposited at the Protein Data Bank with accession number 1WT6.

Analytical ultracentrifugation

Sedimentation velocity and equilibrium data were recorded using an Optima XL-A analytical ultracentrifuge (Beckman Instruments, Fullerton, CA, USA) equipped with 4 and 12-mm Epon double-sector cells in an An-60 Ti rotor and absorption optics. Runs were performed at 20°C in 1/50 mM Tris pH 7.5, 50 mM NaCl and 2/100 mM sodium phosphate pH 7.0 using detection wavelengths of 277 nm and 234 nm. Sedimentation velocity experiments were carried out at 54,000 rpm and 0.65 mg/ml sample concentration. Sedimentation equilibrium measurements were performed at 19,000, 21,000, 24,000, and 26,000 rpm, and protein concentrations of 0.16–3.5 mg/ml for DMPK-CC and 0.09–1.4 mg/ml for DMPK-CCN⁻, where optical density values remained in a linear range. Average molecular masses were evaluated using SECAL (G. Machaidze and A. Lustig, unpublished software), which adjusts the baseline absorbance to obtain the best linear fit of ln(absorbance) vs. radial distance square. A protein partial specific volume of 0.73 ml/g was used, while solution density was taken as 1.003 g/ml and viscosity as 1.02 centipoise.

Circular dichroism spectroscopy

Thermal denaturation of DMPK-CC was monitored on a 62A DS circular dichroism spectropolarimeter (AVIV) equipped with a temperature-controlled quartz cell of 2 mm optical path over a temperature range of 5–90°C. The scan speed was 0.5°C/min with a spectral bandwidth of 2.0 nm.

Binding assays

The binding of DMPK-CC to DMPKΔCC/VR was assayed in 50 mM Tris-HCl pH 7.5, 100 mM NaCl by 1/affinity pull-down assays using His₆-tagged DMPKΔCC/VR immobilized in a His-Trap HP column (GE Healthcare) vs. a flow of untagged DMPK-CC; 2) simultaneous coexpression of both constructs followed by attempts of copurification via metal affinity plus size exclusion chromatography (protocols as above).

Size exclusion chromatography combined with multiangle light scattering (SEC-MALS)

The oligomeric state of DMPKΔVR and DMPKΔCC/VR in solution was determined via SEC-MALS measurements performed on an AKTA explorer 10 system (GE Healthcare) connected to a triangle light scattering detector and a differential refractometer (miniDAWN Tristar and Optilab, respectively; Wyatt Technology, Santa Barbara, CA, USA). A Superdex 200 HR 10/30 column (GE Healthcare) was used in 50 mM Tris-HCl pH 8.0, 50 mM NaCl at a flow rate of 0.5 ml/min. Sample volumes of 50 µl (DMPKΔVR) and 100 µl (DMPKΔCC/VR) were injected at a concentration of 2 mg/ml. A specific refractive index increment (dn/dc) value of 0.185 ml/g was used. The data were recorded and processed using ASTRA software (Wyatt Technology). To determine the detector delay volumes and normalization coefficients for the MALS detector, a BSA sample (Sigma A-8531) was used as reference. Neither despiking nor band broadening correction was applied.

Small angle X-ray scattering (SAXS)

Synchrotron radiation SAXS data were collected on the X33 camera (35) of EMBL (DESY, Hamburg). Solutions of DMPKΔCC/VR were measured at protein concentrations of 1.4, 3.8, 5.7, 8.5, and 9.3 mg/ml in 50 mM Tris-HCl pH 8.0, 50 mM NaCl, 2.5 mM β-mercaptoethanol at 4°C. Measurements were recorded using a MAR345 IP detector at a sample detector distance of 2.7 m and wavelength λ = 1.5 Å in the range of momentum transfer 0.011 < q < 0.45 Å⁻¹. Exposure time for a single measurement was 5 min. To check for
radiation damage, two consecutive 3 min exposures at the highest protein concentration were compared and no changes were observed. The data were normalized, the scattering of the buffer subtracted, and the difference curves extrapolated to zero solute concentration using the program package PRIMUS (36). The maximum particle dimension \(D_{\text{max}} \) forward scattering \(I(0) \) and the radius of gyration \(R_g \) were evaluated using GNOM (37). The molecular mass (MM) of the solute was calculated by comparing its forward scattering to that of a reference solution of BSA (MM = 66 kDa). The volume of the hydrated particle was computed using the Porod invariant equation (38). The low resolution shape of the molecule was computed \(ab \) initio using the program DAMMIN (39), which uses an assembly of densely packed beads to represent the protein molecule. Simulated annealing was used to build a compact, interconnected configuration of beads inside a sphere with the diameter \(D_{\text{max}} \) that fits the experimental data \(I_{\text{exp}}(s) \) to minimize the discrepancy:

\[
\chi^2 = \frac{1}{N-1} \sum_j \left[\frac{I_{\text{exp}}(s_j) - I_{\text{calc}}(s_j)}{\sigma(s_j)} \right]^2
\]

where \(N \) is the number of experimental points, \(c \) is a scaling factor and \(I_{\text{calc}}(s_j) \) and \(\sigma(s_j) \) are the calculated intensity and the experimental error at the momentum transfer \(s_j \), respectively.

The scattering from the crystallographic model of ROCKI (protein fraction of PDB entry 2ETR; 25) was calculated using CRYSOl (40). The model of dimeric DMPKCC/VR was constructed based on the structure of ROCKI using the program BUNCH (41). The dimerization domains consisting of the 70 N-terminal and 20 C-terminal residues of ROCKI remained fixed during the calculations, so that the subunit interface stayed unaltered. The kinase domain was allowed to move as a rigid body while the missing C-terminal tail in DMPKCC/VR was represented as an interconnected chain of dummy residues (for domain definition, see Fig 6a) (42). A simulated annealing protocol was used to position the kinase domain and find the configuration of the C-terminal fragment that could fit the experimental scattering while obeying the \(P_2 \) symmetry of the dimer.

RESULTS

Crystal structure of DMPK-CC

The structure of DMPK-CC (residues 461–537; Fig. 1) has been elucidated by X-ray crystallography up to 1.6 Å resolution. X-ray data statistics and model refinement parameters are given in Table 1. Crystals contain three polypeptide chains in the asymmetric unit, which form a consecutive coil of 86.5 Å length, spanning residues 466–527 and comprising eight complete heptad repeats. They build a parallel, left-handed trimeric motif (Fig 2a).

The architecture of DMPK-CC is restrained at its terminal sections while a central region exhibits moderate structural fluctuations as indicated by crystallographic temperature factors and interchain conformational agreement (Fig 2a, b). The relative structural slackness at the middle point of the domain correlates with a widening of the coil at that position (Fig 2c), which is likely to be caused by the presence of a sequence motif, 493-IRTD-496, with low propensity for CC formation (estimated using MultiCoil; 43). Also noticeable is a residue located upstream, R483, which is likely to be caused by the presence of a sequence motif, 493-IRTD-496, with low propensity for CC formation (Figure 2).

Table 1. X-ray data statistics and model parameters

<table>
<thead>
<tr>
<th>X-ray data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>(P_2), (2)</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>20–1.6 (1.69–1.6)</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>33876 (3951)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>96.3 (79.2)</td>
</tr>
<tr>
<td>(R_{\text{sym}}(I))</td>
<td>0.059 (0.330)</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>4.4 (2.3)</td>
</tr>
<tr>
<td>(<1/\sigma(I) >)</td>
<td>15.0 (2.5)</td>
</tr>
</tbody>
</table>

Model refinement

Resolution (Å)	20–1.6
Reflections working/free	3204/1712
R-factor/R-free (%)	22.7/27.0
Chains per asymmetric unit	3
No. protein/solvent atoms	1619/294
Average B (Å²)	26.05
Rmsd bond lengths (Å) / angles (°)	0.019/1.717
Residues in Ramachandran core / disallowed (%)	99.5/0

Figure 2. Crystal structure of DMPK-CC.

a) Ribbon representation colored in a blue-to-red gradient according to crystallographic B-factors (8 to 55 Å²), where blue designates low values. Solvent atoms in the interior of the CC motif are displayed as red spheres; b) Superimposition of chains A, B, and C colored as in panel a. Cα atoms of residues influencing coil parameters are shown as black spheres; c) coil parameter values for pitch, radius and residue tendency to coil formation. Residues leading to coil alterations are boxed; d) sequence alignment of DMPK-CC and MRCK-CC3. Identity is shown in yellow and similarity in green.
encountered value of –40°, as calculated using Twister; 44). This leads to overtwisting of the subsequent coil portion (Fig 2c) and an associated suboptimal hydrophobic core packing in that region. Thus, central coil widening and pitch parameters appear not to simply reflect crystal lattice restraints but to be an intrinsic structural feature of this CC domain.

Residue arrangements around the 3-fold axis of DMPK-CC are mostly symmetrical, an exception are the side chains of F500, an aromatic residue in position d. The presence of aromatic groups in core positions is extremely rare in dimeric CCs, but it is observed in trimeric motifs (45). For example, the trimeric coil of lung surfactant protein D (46) contains F225 and Y228 in a and d positions, respectively, which exhibit similar asymmetrical arrangements of their side chains. This is likely to reflect the difficulty of packing bulky groups in the limited interior of a trimeric coil. Remarkably, DMPK-CC also houses several solvent molecules in its core. In particular, its C-terminal section comprises an internal cavity filled by solvent that stabilizes a polar residue, N511, in a core position. A similar arrangement has been found in other trimeric CCs, such as bacteriophage T4 fibrin (47) and a domain of a coat protein from MuLVirus (48). Such buried polar groups in CCs are thought to contribute to the specificity of the motif and to maintain chain registry (49). Other relevant interactions in DMPK-CC (Fig. 3) include 6 interchain and 2 intrachain salt bridges. Intercal chain bridges help defining the association state of CCs, while intrachain bridges are important for helix stability (50). The interchain bridges of DMPK-CC belong both to the classical types eg’RE and eg’ER and to unusual core contacts of type ad’RE (notation as in ref 40; where ’ designate residues in a subsequent heptad repeat). Intrachain salt bridges in DMPK-CC are of type bf'RE. It is striking that the sequence of DMPK-CC is rich in charged residues (16E, 9R, vs. 2D, 0K per chain), although less than half of these are involved in interactions (8E, 4R, 0D). Thus, availability of reactive groups in the surface of this domain is high (predominantly of a negatively charged character and toward the NH₂ terminus of the domain), so that it could support electrostatic binding to other molecular components.

Characterization of DMPK-CC in solution

In agreement with crystallographic data, the association state of DMPK-CC in solution is trimeric. One single oligomeric species could be detected using native-PAGE, size exclusion chromatography (Fig 4a), and a sedimentation velocity study, which produced a single migrating boundary corresponding to a S20W of 2.1. Thus, the sample population in solution appeared to be highly homogeneous, with no dynamic states of assem-

Figure 3. Intra- and interchain interactions in DMPK-CC. Green represents hydrophobic groups, red is negatively charged, blue is positively charged, and black, all other residues. The central red sphere represents an internal solvent atom located at the 3-fold axis and coordinating the three side chains of N511. Interactions are shown as connecting lines, where salt bridges are in black.

Figure 4. Biophysical characterization of DMPK-CC in solution. a) Size exclusion chromatogram in 50 mM Tris-HCl pH 7.5, 100 mM NaCl using a Superdex 75 Hi Load 16/60 column. A native-PAGE is shown in the inset; b) molecular mass calculated from sedimentation equilibrium measurements for DMPK-CC (triangles) and DMPK-CCN⁺ (squares). Buffer conditions as in panel a. Theoretical mass values for trimeric formations are indicated by horizontal bars, where a continuous line corresponds to DMPK-CC and a dashed line to DMPK CCN⁺. c) Thermal denaturation curve monitored by circular dichroism. First derivative is shown.
bly being observed. Sedimentation equilibrium analysis of DMPK-CC yielded an average molecular mass (MM) of 33 kDa over the entire protein concentration range assayed (0.16–3.3 mg/ml), consistent with the single presence of trimers in the solutions (theoretical MM for a trimer of this construct 34.9 kDa; Fig 4). Since the sample remained fully assembled at the lowest concentration assayed, the Kd of the interaction must be lower than 4 μM.

These studies carried out at moderate ionic strength (50–100 mM NaCl) and limited protein concentration are in good agreement with crystallographic data obtained from high salt solutions (2.0 M Na⁺/K⁺ tartrate) or polyethylene glycol media and concentrated protein samples (5–10 mg/ml), both at pH 4.6 and 7.5 (28). This suggests that the trimeric formations of DMPK-CC are stable in a broad range of media conditions. To gain further insight into the stability of this domain, it was investigated by thermal denaturation monitored by circular dichroism. A monophasic melting curve was recorded characteristic of a cooperative helix-coil transition of the three chains as a single domain, with a T1/2m of 46°C (Fig 4). This indicates a strong association of the component chains and confirms the robustness of the assembly. Therefore, it can be concluded that DMPK-CC has a strong tendency to self-associate into well-defined trimeric formations.

Oligomeric state of DMPK variants containing and lacking the CC domain

The assembly level of a DMPK construct comprising the LR sequence, the kinase domain, and the CC fraction, DMPKΔVR (Fig. 1), was investigated using multilangle light scattering coupled to size exclusion chromatography (SEC-MALS). This construct closely resembles an expressed DMPK spliceoform and is a suitable representative of this kinase in the cell. The study yielded MMs of 122.7 kDa and 124.5 kDa for protein concentrations estimated using UV-A280 and refractive index, respectively. These values are in excellent agreement with the calculated MM of 120.2 kDa for a dimer of this sample (Fig. 5). This result is consistent with previous sedimentation equilibrium data on a comparable construct of this kinase (23).

To investigate the contribution of DMPK-CC to the dimerization of this kinase, a truncated variant lacking the CC fraction, DMPKΔCC/VR (Fig. 1), was examined. Data from size exclusion chromatography and native PAGE indicated the presence of a single species of DMPKΔCC/VR in solution, and SEC-MALS measurements confirmed that this corresponded to dimeric formations (Fig. 5). The experimental MM estimated for this sample was 101.4 kDa and 107.4 kDa using UV-A280 and refractive index to estimate the protein concentration, respectively. This is in close agreement with the theoretical MM of 106.6 kDa for a dimer of this construct. Furthermore, samples remained monodisperse and data were consistent through injected protein concentrations of 0.3–2 mg/ml, indicating that results are concentration independent (data not shown). The assembly state of DMPKΔVR coincides with that of DMPKΔCC/VR but not DMPK-CC, showing that the association level of this kinase is not dictated by the oligomerization properties of its CC domain and that segments associated with the kinase domain bear this function instead.

Analysis of DMPKΔCC/VR dimers by small angle X-ray scattering

The kinase domain of DMPK is flanked by an N-terminal region of ~65 residue length (LR) and a C-terminal tail containing ~120 residues that links it to the CC domain (Fig. 1). Recent crystallographic data on ROCKI (25) show that, in that kinase, sequences both N- and C-terminal to the kinase domain pack together to form a dimerization domain. It has been shown that the single presence of the α-helical LR region is not sufficient to secure assembly in this case, so that the removal of the kinase C-terminal tail results in ~80% monomeric species (24). Given that ROCKI and DMPK share homology in the mentioned regions (22% and 36% seq. id. in the LR domain and kinase tail, respectively; Fig 6a), we investigated whether DMPK might follow the same architectural principles of ROCKI by analyzing the overall conformation of DMPKΔCC/VR dimers using SAXS.

The experimental SAXS pattern of DMPKΔCC/VR is displayed in Fig 6b. The estimated MM, 95 ± 10 kDa, confirms that the protein is dimeric under the SAXS experimental conditions. This is further corroborated by the volume of the hydrated particle, 210 ± 10 × 10³ Å³ (3), noting that, for globular proteins, the hydrated volume in Å³ should be approximately twice the MM in daltons. The radius of gyration Rg and the maximum particle size Dmax were 39.9 ± 0.6 Å and

Figure 5. SEC-MALS characterization of DMPKΔVR and DMPKΔCC/VR. Molar mass (dots) and normalized UV signals are shown. The theoretical molar masses of the dimers of DMPKΔVR and DMPKΔCC/VR (120.0 kDa and 106.6 kDa, respectively) are indicated with horizontal lines.
130 ± 10 Å, respectively, suggesting an elongated structure. This agrees with the low-resolution shape of DMPKΔCC/VR reconstructed *ab initio*, which fits neatly the experimental data with a discrepancy χ = 0.95 (Fig 6b). A comparison of this with the crystal structure of ROCKI indicates that DMPKΔCC/VR has a similar overall conformation, also appearing to form head-to-head dimers (Fig 6c). The low-resolution model of DMPKΔCC/VR, however, displayed extra electron density that was not satisfied by the ROCKI structure, as can be expected from the fact that each protomer of DMPKΔCC/VR has 65 additional residues at its C terminus (Fig 6a). The missing residues account for 14% of the total scattering mass of this sample. They
play a significant role in the scattering of this molecule, possibly due to their contribution to an anisometric molecular shape (see below), so that the patterns computed from ROCKI yielded a poor fit to the experimental data ($\chi=6.6$; Fig 6b). To construct a model of DMPKΔCC/VR, the missing C-terminal portion was generated for each monomer using beads and maintaining a 2-fold symmetry as described in Materials and Methods. Although during the calculation the kinase domain was allowed to drift and rotate as a rigid body, its position was practically unchanged with respect to ROCKI. Models of DMPKΔCC/VR so generated showed that the C-terminal portions of each protomer formed rather compact formations, suggesting the existence of a protein domain at this position. A typical model of DMPKΔCC/VR in solution provides a good fit to the experimental data ($\chi=1.75$; Fig 6b) and agrees well with the molecular shape calculated ab initio as revealed by a comparative superimposition (Fig 6c). A deviation between models, however, shows that the volumes occupied by the C-terminal fraction are represented somewhat differently by the two modeling methods. It should be noted that the ab initio model was obtained without imposing any prior knowledge or symmetry restrictions, whereas the reconstructed model applies a 2-fold symmetry that may not be entirely adhered to by a potentially flexible C-terminal tail. Such flexibility could underlie localized deviations between otherwise consistent models and scattering patterns.

CC domains can be found in proteins in combination with other motifs that influence their association. The most prominent example is that of the trimeric CC of fibritin, which is followed by a C-terminal extension of ~30 residue length that folds into a β-hairpin (51). This intertwines with equivalent β-hairpins from other subunits, being essential to achieve CC trimerization in that case. Given that SAXS models of DMPKΔCC/VR suggested the presence of a structural formation immediately prior to the CC fraction, we assessed whether this might act as an association motif that could modulate CC stoichiometry. For this, we constructed an N-terminally extended version of DMPK-CC, DMPK-CC$^N_+$(Fig. 1), and analyzed its oligomeric state by sedimentation equilibrium (Fig 4b). Results indicated that DMPK-CC$^N_+$ remained trimeric (estimated MM 56.1 kDa compared to a theoretical MM of 63.5 kDa for a trimer of this construct), suggesting that possible structural elements of the kinase-CC linker sequence do not influence the oligomerization of this coil.

DMPK-CC is not involved in domain interactions

The CC fractions of ROCKs and MRCK have been shown to interact directly with their respective kinase domains, thereby acting as intrasteric inhibitors of kinase activity (26, 27). In ROCKs, the interaction involves the Rho binding site at the C terminus of its long CC domain, whereas in MRCK the binding has been mapped to a fragment spanning CC2/CC3, whose deletion resulted in about a 3-fold increase in activity. Given that DMPK-CC and MRCK-CC3 share certain sequence similarity (up to 31% identity according to isoforms) (Fig 2d), we investigated the possible interaction of DMPK-CC with other domains in this kinase using pull-down assays as well as coexpression/copurification experiments on DMPK-CC and DMPKΔCC/VR. Binding between these species could not be detected by either procedure, which yielded independent original species. Hence, DMPK-CC appears to neither interact with the kinase domain nor form a hetero-coil against the α-helical LR sequence. This indicates that a CC association/dissociation regulatory model such as that proposed for MRCK and ROCKs is unlikely to be applicable to DMPK and that the kinase and CC fractions component of DMPK are likely to be arranged as architecturally distinct fractions, resulting in a globular portion and a filamentous shaft.

DISCUSSION

The CC domains of DMPK-related kinases are essential to the regulation of their catalytic activities. However, the molecular events mediated by these domains are yet to be accurately understood. CC sequences in this family exhibit large variability in length and composition, sharing little or no similarity. Only minimal structural data exist that aid to clarify the respective properties and functional roles of CC domains within this family. Here we report the crystal structure of DMPK-CC, which is unrelated to the ROCKs-CCs previously described (21, 22). Contrary to the dimeric character of the latter fragments, DMPK-CC forms a trimeric motif that is characterized by rigid termini and a central widening of its coil. It is currently unknown whether this feature might reflect functional properties of this domain. As proven by sedimentation equilibrium data, the assembly level of DMPK-CC in solution coincides with that in the crystal. No other oligomeric state has been detected in the current study under a broad range of protein concentration and ionic strength conditions. Furthermore, thermal denaturation studies have shown this assembly to be stable. Thus, our data prove that the oligomeric states of CC domains from this kinase family are more diversified than previously expected and that more coils must be investigated before general conclusions on their self-association properties can be drawn.

Experimental results on DMPK-CC contrast markedly with sequence-based predictions, which suggests this coil forms dimeric assemblies. For example, the software MultiCoil (43) estimates 82% probability of dimer vs. 10% trimer formation. The structural determinants of CC association remain poorly understood, and thus such predictions should be considered with caution. Only a few systematic analyses have addressed the basis of CC association experimentally, focusing on either the role of hydrophobic core residues (52, 53) or salt bridges (e.g., 54, 55). Consequently, cases are described where experimental data disagree with predictions (for
example, see ref 46). To understand the molecular basis of DMPK-CC trimerization, we analyzed its inter-chain contacts. The only factor that might be proposed at this time to favor formation of trimers over dimers is the presence of an aromatic residue, F500, at core position a, since this is rarely observed in dimeric coils (45). The contribution of the several salt bridges in DMPK-CC to its oligomerization cannot be evaluated based on current knowledge.

Given that CCs are established oligomerization motifs, these were initially thought to be indispensable for the molecular assembly of DMPK-related kinases. However, recent studies of ROCKs have shown that other domains mediate self-association in these kinases, namely, the N-terminal LR region and a tail C-terminal to the kinase domain (24, 25). Similarly, in the current study, a truncated DMPK variant lacking the CC moiety formed dimeric assemblies according to SEC-MALS data. A low-resolution structural analysis of these dimers using SAXS indicated that DMPK and ROCKI share similar dimerization principles involving head-to-head protomer interactions, even though a certain number of residues involved in the dimerization of ROCKI are not conserved in DMPK (Fig 6a). Our data on the truncated DMPK variant differ from those of a previous study (23), where a similar DMPK construct was argued to be monomeric according to sucrose density gradient sedimentation and pull-down assays. The dimeric form in our study (residues 1–460) contains 29 more residues at its C terminus than the construct previously reported. The truncation in that case might have disrupted a possible structural element C-terminal to the kinase domain, which has been insinuated by current SAXS data. More studies are required to identify the exact structural details of this segment of DMPK and to establish whether its integrity is essential for the assembly of this kinase. Contrary to that former study, we conclude that the CC domain of DMPK is not required for its self-association and that a common architectural design is likely to be shared by the closest members of this family: DMPK, MRCK, and ROCKs.

The fact that an interaction between DMPK-CC and other domains in DMPK could not be identified in the current study suggests it is unlikely that the assembly properties of this CC are altered by a possible embedding within the kinase core. Neither is the influence of flanking structural elements expected, given that an N-terminally extended CC construct retained the same oligomerization concentration. Thus, we speculate that the stoichiometry of this coil within the context of full DMPK must be dominated by the prior association of the N-terminal catalytic fraction into trimers. Prediction data confirm that the DMPK-CC sequence is geometrically compatible with a dimeric association, and it is known that CC oligomerization can be dynamically altered by local factors (20).

Oligomerization is crucial for the activation of numerous kinases. Often self-assembly is directed to ensure efficient autophosphorylation in trans by increasing the local concentration of catalytic domains (56). Given that DMPK-CC does not determine the self-association of this kinase and that, contrary to MRCK and ROCKs, it does not act as an intrasteric inhibitor but as an activator, further investigations are needed to clarify whether its function might relate instead to the achievement of an active conformation or even substrate docking. Moreover, given the heterogeneity in CC sequences and their diversified interaction patterns across DMPK-related kinases, studies are required to reveal the exact role of these moieties and to establish the principles of their regulatory mechanisms.

Thanks go to Prof. B. Perryman for facilitating the initial DNA coding for DMPK. A special mention goes to R. Ravelli at ID14–2 (ESRF) for exceptional assistance during data collection. Thanks go to S. Strelkov for critical reading of this manuscript. Most sincere gratitude goes to Prof. A. Pliuchkun for generous support with SEC-MALS. We acknowledge the support of Swiss National Foundation (grant 3100A0–100852) and to P.G. of Association Francaise contre les Myopathies (grant 9812).

REFERENCES

and not ezrin/radixin/moesin proteins at the cleavage furrow. Oncogene 19, 6059–6064

Received for publication December 3, 2005. Accepted for publication February 3, 2006.